Al-X(X=Sc,Zr,Er)合金热处理过程中的弹性场演化——三维多相场研究的启示

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL Journal of Engineering Materials and Technology-transactions of The Asme Pub Date : 2023-06-30 DOI:10.1115/1.4062874
S. Dhanish, Sundar Daniel
{"title":"Al-X(X=Sc,Zr,Er)合金热处理过程中的弹性场演化——三维多相场研究的启示","authors":"S. Dhanish, Sundar Daniel","doi":"10.1115/1.4062874","DOIUrl":null,"url":null,"abstract":"\n Microstructural evolution and resulting stress, strain, and concentration field distribution during Al3X (X=Sc, Zr, Er) precipitation in Al matrix are investigated in this work using the 3D-multi phase-field method. Depending on the heat treatment, modulus mismatch, lattice parameter mismatch, and interfacial free energy, precipitate developed to rhombicuboctahedron, and near cuboidal morphologies. The composition distribution and AlAl3X transformation driving force map identified a difference in precipitation kinetics for each alloy. The precipitation mechanism in the three systems is analysed in detail with temporal evolution plots of energy components during phase transformation. Al3Er precipitate exhibits the highest growth rate due to Er's high diffusivity and significant lattice parameter mismatch in the Al-Er system. The system has a high chemical and elastic driving force for particle growth, thus attaining quasi-static equilibrium at a relatively lower temperature and time. Therefore, this system observes high magnitude stress, strain, and strain energy field around the Al matrix. The theoretical simulation results obtained from the present study will benefit Aluminium multicomponent alloy design for high strength applications.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic Field Evolution in Al-X (X=Sc,Zr,Er) Alloy During Heat Treatment, Insights from 3D- Multi Phase Field Study\",\"authors\":\"S. Dhanish, Sundar Daniel\",\"doi\":\"10.1115/1.4062874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Microstructural evolution and resulting stress, strain, and concentration field distribution during Al3X (X=Sc, Zr, Er) precipitation in Al matrix are investigated in this work using the 3D-multi phase-field method. Depending on the heat treatment, modulus mismatch, lattice parameter mismatch, and interfacial free energy, precipitate developed to rhombicuboctahedron, and near cuboidal morphologies. The composition distribution and AlAl3X transformation driving force map identified a difference in precipitation kinetics for each alloy. The precipitation mechanism in the three systems is analysed in detail with temporal evolution plots of energy components during phase transformation. Al3Er precipitate exhibits the highest growth rate due to Er's high diffusivity and significant lattice parameter mismatch in the Al-Er system. The system has a high chemical and elastic driving force for particle growth, thus attaining quasi-static equilibrium at a relatively lower temperature and time. Therefore, this system observes high magnitude stress, strain, and strain energy field around the Al matrix. The theoretical simulation results obtained from the present study will benefit Aluminium multicomponent alloy design for high strength applications.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062874\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4062874","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文采用三维多相场方法研究了Al3X(X=Sc,Zr,Er)在Al基体中沉淀过程中的微观结构演变及其产生的应力、应变和浓度场分布。根据热处理、模量失配、晶格参数失配和界面自由能的不同,沉淀物发展为菱形亚八面体和近立方体形态。成分分布和AlAl3X转变驱动力图确定了每种合金沉淀动力学的差异。利用相变过程中能量成分的时间演化图,详细分析了这三个系统的降水机制。Al3Er沉淀物由于Er's的高扩散率和显著的晶格参数失配。该系统对颗粒生长具有高的化学和弹性驱动力,从而在相对较低的温度和时间下实现准静态平衡。因此,该系统观察到Al基体周围的高强度应力、应变和应变能场。从本研究中获得的理论模拟结果将有助于铝多组分合金在高强度应用中的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elastic Field Evolution in Al-X (X=Sc,Zr,Er) Alloy During Heat Treatment, Insights from 3D- Multi Phase Field Study
Microstructural evolution and resulting stress, strain, and concentration field distribution during Al3X (X=Sc, Zr, Er) precipitation in Al matrix are investigated in this work using the 3D-multi phase-field method. Depending on the heat treatment, modulus mismatch, lattice parameter mismatch, and interfacial free energy, precipitate developed to rhombicuboctahedron, and near cuboidal morphologies. The composition distribution and AlAl3X transformation driving force map identified a difference in precipitation kinetics for each alloy. The precipitation mechanism in the three systems is analysed in detail with temporal evolution plots of energy components during phase transformation. Al3Er precipitate exhibits the highest growth rate due to Er's high diffusivity and significant lattice parameter mismatch in the Al-Er system. The system has a high chemical and elastic driving force for particle growth, thus attaining quasi-static equilibrium at a relatively lower temperature and time. Therefore, this system observes high magnitude stress, strain, and strain energy field around the Al matrix. The theoretical simulation results obtained from the present study will benefit Aluminium multicomponent alloy design for high strength applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
期刊最新文献
Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr Influence of Multiple Modifications on the Fatigue Behavior of Bitumen and Asphalt Mixtures High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study Simulation of Pitting Corrosion Under Stress Based on Cellular Automata and Finite Element Method Corrosion Behavior of 20G Steel in Saline (Na2SO4) Circumstances at High Temperature/Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1