{"title":"基于和谐搜索的反向传播优化黄金价格预测","authors":"Yuni Kurniawati, M. Muhajir","doi":"10.18187/pjsor.v18i3.3915","DOIUrl":null,"url":null,"abstract":"Gold is a precious metal often used for investment, due to its cash-in ease and yearly value increase. This indicates that price forecasting is used to determine the prospect of future gold prices. Strong gold price forecasting is highly desired by investors to make decisions. That is why technical indicators are very important used for forecasting. By using technical indicators the information obtained can be more informative than using pure gold prices. One of the commonly used methods is Backpropagation (BP). BP has been shown to have good performance in dealing with nonlinear problems. However, due to the random determination of the parameters of neurons in the hidden layer BP requires a number of neurons in the hidden layer to get optimal results. Therefore, this study aims to analyze the optimization of Backpropagation (BP) through the Harmony Search (HS) algorithm by evaluating the use of relevant technical indicators for forecasting gold prices. In the HS-BP model, this method is used to determine input variables and neurons in the hidden layer. HS with the principle of musicians with the aim of finding the best harmony. This technique is used based on the results of the fitness function. In this research, the fitness function used is Mean Square Error (MSE). HS aims to optimize BP in such a way that the forecasting system provides the lowest MSE and improves the forecasting performance of gold prices. Based on this research, the input variables used are Moving Average, Relative Strength Index, and Bollinger Bands. Next, the selected variables and neurons are applied to the BP algorithm. Where the implementation uses gold closing price data for January 2020-2021. The results showed that the proposed method has better results in forecasting accuracy and convergence error. HS-BP provides a better level of gold price forecasting than the regular BP model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Backpropagation Using Harmony Search for Gold Price Forecasting\",\"authors\":\"Yuni Kurniawati, M. Muhajir\",\"doi\":\"10.18187/pjsor.v18i3.3915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold is a precious metal often used for investment, due to its cash-in ease and yearly value increase. This indicates that price forecasting is used to determine the prospect of future gold prices. Strong gold price forecasting is highly desired by investors to make decisions. That is why technical indicators are very important used for forecasting. By using technical indicators the information obtained can be more informative than using pure gold prices. One of the commonly used methods is Backpropagation (BP). BP has been shown to have good performance in dealing with nonlinear problems. However, due to the random determination of the parameters of neurons in the hidden layer BP requires a number of neurons in the hidden layer to get optimal results. Therefore, this study aims to analyze the optimization of Backpropagation (BP) through the Harmony Search (HS) algorithm by evaluating the use of relevant technical indicators for forecasting gold prices. In the HS-BP model, this method is used to determine input variables and neurons in the hidden layer. HS with the principle of musicians with the aim of finding the best harmony. This technique is used based on the results of the fitness function. In this research, the fitness function used is Mean Square Error (MSE). HS aims to optimize BP in such a way that the forecasting system provides the lowest MSE and improves the forecasting performance of gold prices. Based on this research, the input variables used are Moving Average, Relative Strength Index, and Bollinger Bands. Next, the selected variables and neurons are applied to the BP algorithm. Where the implementation uses gold closing price data for January 2020-2021. The results showed that the proposed method has better results in forecasting accuracy and convergence error. HS-BP provides a better level of gold price forecasting than the regular BP model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i3.3915\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i3.3915","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of Backpropagation Using Harmony Search for Gold Price Forecasting
Gold is a precious metal often used for investment, due to its cash-in ease and yearly value increase. This indicates that price forecasting is used to determine the prospect of future gold prices. Strong gold price forecasting is highly desired by investors to make decisions. That is why technical indicators are very important used for forecasting. By using technical indicators the information obtained can be more informative than using pure gold prices. One of the commonly used methods is Backpropagation (BP). BP has been shown to have good performance in dealing with nonlinear problems. However, due to the random determination of the parameters of neurons in the hidden layer BP requires a number of neurons in the hidden layer to get optimal results. Therefore, this study aims to analyze the optimization of Backpropagation (BP) through the Harmony Search (HS) algorithm by evaluating the use of relevant technical indicators for forecasting gold prices. In the HS-BP model, this method is used to determine input variables and neurons in the hidden layer. HS with the principle of musicians with the aim of finding the best harmony. This technique is used based on the results of the fitness function. In this research, the fitness function used is Mean Square Error (MSE). HS aims to optimize BP in such a way that the forecasting system provides the lowest MSE and improves the forecasting performance of gold prices. Based on this research, the input variables used are Moving Average, Relative Strength Index, and Bollinger Bands. Next, the selected variables and neurons are applied to the BP algorithm. Where the implementation uses gold closing price data for January 2020-2021. The results showed that the proposed method has better results in forecasting accuracy and convergence error. HS-BP provides a better level of gold price forecasting than the regular BP model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.