在线总有机碳(TOC)监测水和废水处理厂的过程和操作优化

Céline Assmann, Amanda M. Scott, D. Biller
{"title":"在线总有机碳(TOC)监测水和废水处理厂的过程和操作优化","authors":"Céline Assmann, Amanda M. Scott, D. Biller","doi":"10.5194/DWES-10-61-2017","DOIUrl":null,"url":null,"abstract":"Abstract. Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters – see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.","PeriodicalId":53581,"journal":{"name":"Drinking Water Engineering and Science","volume":"10 1","pages":"61-68"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization\",\"authors\":\"Céline Assmann, Amanda M. Scott, D. Biller\",\"doi\":\"10.5194/DWES-10-61-2017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters – see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.\",\"PeriodicalId\":53581,\"journal\":{\"name\":\"Drinking Water Engineering and Science\",\"volume\":\"10 1\",\"pages\":\"61-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drinking Water Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/DWES-10-61-2017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drinking Water Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/DWES-10-61-2017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 26

摘要

摘要几十年前,为了测量水中的有机物,开发了生物需氧量(BOD)和化学需氧量(COD)等有机测量方法。如今,这些耗时的测量仍然被用作检查水处理质量的参数;然而,生成结果所需的时间从数小时到数天不等,不允许COD或BOD成为有用的过程控制参数——见(1)标准方法5210B;5天BOD测试,1997,和(2)ASTM D1252;COD测试,2012年。在线有机碳监测可以实现有效的过程控制,因为每隔几分钟就会产生一次结果。尽管它不能取代合规报告仍然需要的BOD或COD测量,但它允许智能、数据驱动和快速决策,以改进流程控制和优化或满足合规要求。得益于对生成数据的智能解读和现在采取实时行动的能力,城市饮用水和废水处理设施运营商可以积极影响其运营支出效率和满足监管要求的能力。本文描述了三家城市污水和饮用水工厂如何通过实施在线总有机碳(TOC)监测获得工艺见解,并确定优化机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization
Abstract. Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters – see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drinking Water Engineering and Science
Drinking Water Engineering and Science Environmental Science-Water Science and Technology
CiteScore
3.90
自引率
0.00%
发文量
3
审稿时长
40 weeks
期刊最新文献
The evaluation of hydraulic reliability indices in water distribution networks under pipe failure conditions Technical note: Graph theory-based heuristics to aid in the implementation of optimized drinking water network sectorization Solar distillation of impure water from four different water sources under the southwestern Nigerian climate Sustainability characteristics of drinking water supply in the Netherlands Preparation of thin-film composite membranes supported with electrospun nanofibers for desalination by forward osmosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1