B. Lin, Wenzhun Huang, Jianxin Guo, Yan-wen Wang, Hongjun Ye, Xiang Ji
{"title":"一种高效率的超宽带椭圆型线圆极化转换超表面","authors":"B. Lin, Wenzhun Huang, Jianxin Guo, Yan-wen Wang, Hongjun Ye, Xiang Ji","doi":"10.1080/02726343.2022.2144062","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this work, a high-efficiency ultra-wideband ellipse-shaped linear-to-circular polarization conversion metasurface is proposed. The metasurface is composed of a square array of ellipse-shaped metal patches printed on grounded dielectric substrate and covered by a dielectric layer, because it is an orthogonal anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions ±45° with respect to the vertical y-axis, and the reflection phase difference under u- and v-polarized incidences is very close to −90° in an ultra-wide frequency ranges, both theoretical prediction and numerical simulation show that the metasurface can achieve high-efficiency ultra-wideband linear-to-circular polarization conversion under x- and y-polarized incidences, its 3-dB axial-ratio (AR) band is between 7.08 and 25.86 GHz with a relative bandwidth of 114%, in particular, the AR of its reflected wave can be kept lower than 0.89 dB in the frequency range 7.65–25.32 GHz, in which the polarization conversion rate (PCR) is always larger than 99.73%. Finally, one effective experimental verification is carried out, and a reasonable agreement is observed between the simulation and experimental results. Therefore, the polarization conversion metasurface has great potential application values in various polarization-controlled devices.","PeriodicalId":50542,"journal":{"name":"Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An ultra-wideband ellipse-shaped linear-to-circular polarization conversion metasurface with high efficiency\",\"authors\":\"B. Lin, Wenzhun Huang, Jianxin Guo, Yan-wen Wang, Hongjun Ye, Xiang Ji\",\"doi\":\"10.1080/02726343.2022.2144062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this work, a high-efficiency ultra-wideband ellipse-shaped linear-to-circular polarization conversion metasurface is proposed. The metasurface is composed of a square array of ellipse-shaped metal patches printed on grounded dielectric substrate and covered by a dielectric layer, because it is an orthogonal anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions ±45° with respect to the vertical y-axis, and the reflection phase difference under u- and v-polarized incidences is very close to −90° in an ultra-wide frequency ranges, both theoretical prediction and numerical simulation show that the metasurface can achieve high-efficiency ultra-wideband linear-to-circular polarization conversion under x- and y-polarized incidences, its 3-dB axial-ratio (AR) band is between 7.08 and 25.86 GHz with a relative bandwidth of 114%, in particular, the AR of its reflected wave can be kept lower than 0.89 dB in the frequency range 7.65–25.32 GHz, in which the polarization conversion rate (PCR) is always larger than 99.73%. Finally, one effective experimental verification is carried out, and a reasonable agreement is observed between the simulation and experimental results. Therefore, the polarization conversion metasurface has great potential application values in various polarization-controlled devices.\",\"PeriodicalId\":50542,\"journal\":{\"name\":\"Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/02726343.2022.2144062\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02726343.2022.2144062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An ultra-wideband ellipse-shaped linear-to-circular polarization conversion metasurface with high efficiency
ABSTRACT In this work, a high-efficiency ultra-wideband ellipse-shaped linear-to-circular polarization conversion metasurface is proposed. The metasurface is composed of a square array of ellipse-shaped metal patches printed on grounded dielectric substrate and covered by a dielectric layer, because it is an orthogonal anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions ±45° with respect to the vertical y-axis, and the reflection phase difference under u- and v-polarized incidences is very close to −90° in an ultra-wide frequency ranges, both theoretical prediction and numerical simulation show that the metasurface can achieve high-efficiency ultra-wideband linear-to-circular polarization conversion under x- and y-polarized incidences, its 3-dB axial-ratio (AR) band is between 7.08 and 25.86 GHz with a relative bandwidth of 114%, in particular, the AR of its reflected wave can be kept lower than 0.89 dB in the frequency range 7.65–25.32 GHz, in which the polarization conversion rate (PCR) is always larger than 99.73%. Finally, one effective experimental verification is carried out, and a reasonable agreement is observed between the simulation and experimental results. Therefore, the polarization conversion metasurface has great potential application values in various polarization-controlled devices.
期刊介绍:
Publishing eight times per year, Electromagnetics offers refereed papers that span the entire broad field of electromagnetics and serves as an exceptional reference source of permanent archival value. Included in this wide ranging scope of materials are developments in electromagnetic theory, high frequency techniques, antennas and randomes, arrays, numerical techniques, scattering and diffraction, materials, and printed circuits. The journal also serves as a forum for deliberations on innovations in the field. Additionally, special issues give more in-depth coverage to topics of immediate importance.
All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. Submissions can be made via email or postal mail.