{"title":"负载Zr和pt的金属在y型沸石催化剂上改善正庚烷加氢异构反应产物的实验和动力学研究","authors":"Younus H. Khalaf, B. Al-Zaidi, Zaidoon M. Shakour","doi":"10.17807/orbital.v14i3.17429","DOIUrl":null,"url":null,"abstract":"The escalating cost of Pt metal has prompted researchers to incorporate other metals into Pt/catalysts to reduce the amount of Pt. In this work, several bimetallic Pt-Zr/HY-zeolite catalysts were prepared by incorporating small amounts of the inexpensive Zr into the Pt/HY-zeolite to form an active and selective catalyst. Results showed that although half of the required platinum metal was used, the catalytic activity of the prepared Pt-Zr/HY bimetallic catalyst was higher than that of the monometallic (Pt or Zr)/HY catalysts, as a result of the improved Lewis acidity of that catalyst that resulted from the addition of the Zr metal; additionally, the branched alkanes' yield also increased. The optimum catalyst was bimetallic, containing 0.5 wt% Pt + 0.5 wt% Zr, which achieved the highest yield of isomers at 70.2 mol%, along with 82.61 and 84.98 mol% for conversion and selectivity, respectively, under 1 MPa and 250°C reaction conditions. In addition, the hydroisomerization reaction kinetic model was achieved, giving good predicted results in agreement with the experimental calculations, with an acceptable relative error. It was found that lower activation energies (about 44.5 kJ/mol) were needed for olefin hydrogenation to iso-paraffins, while higher activation energies were required for i-paraffin hydrocracking (about 138.1kJ/mol).","PeriodicalId":19680,"journal":{"name":"Orbital: The Electronic Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental and Kinetic Study of the Effect of using Zr- and Pt-loaded Metals on Y-zeolite-based Catalyst to Improve the Products of n-heptane Hydroisomerization Reactions\",\"authors\":\"Younus H. Khalaf, B. Al-Zaidi, Zaidoon M. Shakour\",\"doi\":\"10.17807/orbital.v14i3.17429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating cost of Pt metal has prompted researchers to incorporate other metals into Pt/catalysts to reduce the amount of Pt. In this work, several bimetallic Pt-Zr/HY-zeolite catalysts were prepared by incorporating small amounts of the inexpensive Zr into the Pt/HY-zeolite to form an active and selective catalyst. Results showed that although half of the required platinum metal was used, the catalytic activity of the prepared Pt-Zr/HY bimetallic catalyst was higher than that of the monometallic (Pt or Zr)/HY catalysts, as a result of the improved Lewis acidity of that catalyst that resulted from the addition of the Zr metal; additionally, the branched alkanes' yield also increased. The optimum catalyst was bimetallic, containing 0.5 wt% Pt + 0.5 wt% Zr, which achieved the highest yield of isomers at 70.2 mol%, along with 82.61 and 84.98 mol% for conversion and selectivity, respectively, under 1 MPa and 250°C reaction conditions. In addition, the hydroisomerization reaction kinetic model was achieved, giving good predicted results in agreement with the experimental calculations, with an acceptable relative error. It was found that lower activation energies (about 44.5 kJ/mol) were needed for olefin hydrogenation to iso-paraffins, while higher activation energies were required for i-paraffin hydrocracking (about 138.1kJ/mol).\",\"PeriodicalId\":19680,\"journal\":{\"name\":\"Orbital: The Electronic Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orbital: The Electronic Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17807/orbital.v14i3.17429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orbital: The Electronic Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17807/orbital.v14i3.17429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental and Kinetic Study of the Effect of using Zr- and Pt-loaded Metals on Y-zeolite-based Catalyst to Improve the Products of n-heptane Hydroisomerization Reactions
The escalating cost of Pt metal has prompted researchers to incorporate other metals into Pt/catalysts to reduce the amount of Pt. In this work, several bimetallic Pt-Zr/HY-zeolite catalysts were prepared by incorporating small amounts of the inexpensive Zr into the Pt/HY-zeolite to form an active and selective catalyst. Results showed that although half of the required platinum metal was used, the catalytic activity of the prepared Pt-Zr/HY bimetallic catalyst was higher than that of the monometallic (Pt or Zr)/HY catalysts, as a result of the improved Lewis acidity of that catalyst that resulted from the addition of the Zr metal; additionally, the branched alkanes' yield also increased. The optimum catalyst was bimetallic, containing 0.5 wt% Pt + 0.5 wt% Zr, which achieved the highest yield of isomers at 70.2 mol%, along with 82.61 and 84.98 mol% for conversion and selectivity, respectively, under 1 MPa and 250°C reaction conditions. In addition, the hydroisomerization reaction kinetic model was achieved, giving good predicted results in agreement with the experimental calculations, with an acceptable relative error. It was found that lower activation energies (about 44.5 kJ/mol) were needed for olefin hydrogenation to iso-paraffins, while higher activation energies were required for i-paraffin hydrocracking (about 138.1kJ/mol).
期刊介绍:
Orbital: The Electronic Journal of Chemistry is a quarterly scientific journal published by the Institute of Chemistry of the Universidade Federal de Mato Grosso do Sul, Brazil. Original contributions (in English) are welcome, which focus on all areas of Chemistry and their interfaces with Pharmacy, Biology, and Physics. Neither authors nor readers have to pay fees. The journal has an editorial team of scientists drawn from regions throughout Brazil and world, ensuring high standards for the texts published. The following categories are available for contributions: 1. Full papers 2. Reviews 3. Papers on Education 4. History of Chemistry 5. Short communications 6. Technical notes 7. Letters to the Editor The Orbital journal also publishes a number of special issues in addition to the regular ones. The central objectives of Orbital are threefold: (i) to provide the general scientific community (at regional, Brazilian, and worldwide levels) with a formal channel for the communication and dissemination of the Chemistry-related literature output by publishing original papers based on solid research and by reporting contributions which further knowledge in the field; (ii) to provide the community with open, free access to the full content of the journal, and (iii) to constitute a valuable channel for the dissemination of Chemistry-related investigations.