基于LSTM的多步超前软件故障预测递归方法

Md. Rashedul Islam, M. Begum, Md. Nasim Akhtar
{"title":"基于LSTM的多步超前软件故障预测递归方法","authors":"Md. Rashedul Islam, M. Begum, Md. Nasim Akhtar","doi":"10.1080/09720529.2022.2133251","DOIUrl":null,"url":null,"abstract":"Abstract The advancement of technologies demands a sustainable solution. To ensure the software system’s sustainability, diminishing the software faults before the implementation requires utmost attention, along with an effective procedure to predict the faults. A software system’s maximum number of faults can be neutralized if it can be predicted at the earliest possible time. Therefore, we applied Long short-term memory (LSTM) to predict the faults of multi-time stamps ahead using a recursive approach. The Min-Max scaler and one of the power transformation methods, Box-Cox are used to normalize the software fault data. The traditional software reliability growth models (SRGMs) are also used to predict faults. The performance of the LSTM and SRGMs models are compared based on their prediction accuracy evaluation. The observed prediction error of LSTM models is much lower than the SRGMs.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"2129 - 2138"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recursive approach for multiple step-ahead software fault prediction through long short-term memory (LSTM)\",\"authors\":\"Md. Rashedul Islam, M. Begum, Md. Nasim Akhtar\",\"doi\":\"10.1080/09720529.2022.2133251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The advancement of technologies demands a sustainable solution. To ensure the software system’s sustainability, diminishing the software faults before the implementation requires utmost attention, along with an effective procedure to predict the faults. A software system’s maximum number of faults can be neutralized if it can be predicted at the earliest possible time. Therefore, we applied Long short-term memory (LSTM) to predict the faults of multi-time stamps ahead using a recursive approach. The Min-Max scaler and one of the power transformation methods, Box-Cox are used to normalize the software fault data. The traditional software reliability growth models (SRGMs) are also used to predict faults. The performance of the LSTM and SRGMs models are compared based on their prediction accuracy evaluation. The observed prediction error of LSTM models is much lower than the SRGMs.\",\"PeriodicalId\":46563,\"journal\":{\"name\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"volume\":\"25 1\",\"pages\":\"2129 - 2138\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09720529.2022.2133251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2133251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要技术的进步需要一个可持续的解决方案。为了确保软件系统的可持续性,在实施之前减少软件故障需要极大的关注,并制定有效的故障预测程序。如果能够在尽可能早的时间预测软件系统的最大故障数量,那么它就可以被消除。因此,我们应用长短期记忆(LSTM)来预测多时间戳的故障,并使用递归方法。最小-最大缩放器和功率变换方法之一Box-Cox用于对软件故障数据进行归一化。传统的软件可靠性增长模型(SRGM)也用于预测故障。基于LSTM和SRGMs模型的预测精度评估,对它们的性能进行了比较。LSTM模型的观测预测误差远低于SRGM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive approach for multiple step-ahead software fault prediction through long short-term memory (LSTM)
Abstract The advancement of technologies demands a sustainable solution. To ensure the software system’s sustainability, diminishing the software faults before the implementation requires utmost attention, along with an effective procedure to predict the faults. A software system’s maximum number of faults can be neutralized if it can be predicted at the earliest possible time. Therefore, we applied Long short-term memory (LSTM) to predict the faults of multi-time stamps ahead using a recursive approach. The Min-Max scaler and one of the power transformation methods, Box-Cox are used to normalize the software fault data. The traditional software reliability growth models (SRGMs) are also used to predict faults. The performance of the LSTM and SRGMs models are compared based on their prediction accuracy evaluation. The observed prediction error of LSTM models is much lower than the SRGMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
21.40%
发文量
126
期刊最新文献
A4-graph for the twisted group 3D4 (3) Modern Metrics (MM): Software size estimation using function points for artificial intelligence and data analytics applications and finding the effort modifiers of the functional units using indian software industry Optimized deep learning methodology for intruder behavior detection and classification in cloud I-prime fuzzy submodules Information security based on sub-system keys generator by utilizing polynomials method and logic gate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1