连续变量的量子拓扑数据分析

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2018-04-05 DOI:10.3934/fods.2019017
G. Siopsis
{"title":"连续变量的量子拓扑数据分析","authors":"G. Siopsis","doi":"10.3934/fods.2019017","DOIUrl":null,"url":null,"abstract":"I introduce a continuous-variable quantum topological data algorithm. The goal of the quantum algorithm is to calculate the Betti numbers in persistent homology which are the dimensions of the kernel of the combinatorial Laplacian. I accomplish this task with the use of qRAM to create an oracle which organizes sets of data. I then perform a continuous-variable phase estimation on a Dirac operator to get a probability distribution with eigenvalue peaks. The results also leverage an implementation of continuous-variable conditional swap gate.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2018-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quantum topological data analysis with continuous variables\",\"authors\":\"G. Siopsis\",\"doi\":\"10.3934/fods.2019017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I introduce a continuous-variable quantum topological data algorithm. The goal of the quantum algorithm is to calculate the Betti numbers in persistent homology which are the dimensions of the kernel of the combinatorial Laplacian. I accomplish this task with the use of qRAM to create an oracle which organizes sets of data. I then perform a continuous-variable phase estimation on a Dirac operator to get a probability distribution with eigenvalue peaks. The results also leverage an implementation of continuous-variable conditional swap gate.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2018-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2019017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2019017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

介绍了一种连续可变量子拓扑数据算法。量子算法的目标是计算持久同调中的Betti数,该数是组合拉普拉斯算子的核的维数。我通过使用qRAM创建一个组织数据集的oracle来完成这项任务。然后,我对Dirac算子进行连续可变相位估计,得到具有特征值峰值的概率分布。结果还利用了连续变量条件交换门的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum topological data analysis with continuous variables
I introduce a continuous-variable quantum topological data algorithm. The goal of the quantum algorithm is to calculate the Betti numbers in persistent homology which are the dimensions of the kernel of the combinatorial Laplacian. I accomplish this task with the use of qRAM to create an oracle which organizes sets of data. I then perform a continuous-variable phase estimation on a Dirac operator to get a probability distribution with eigenvalue peaks. The results also leverage an implementation of continuous-variable conditional swap gate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets Noise calibration for SPDEs: A case study for the rotating shallow water model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1