{"title":"G波段500W片束扩展相互作用速调管的设计","authors":"Z. Changqing, Feng Jinjun, Cai Jun, Pan Pan","doi":"10.11884/HPLPB202032.200195","DOIUrl":null,"url":null,"abstract":"High power generation in terahertz frequency band is limited by physical mechanism. A G-band sheet beam extended-interaction klystron was designed to demonstrate the power level and the physical factors that affect the performance of the klystron. An elliptical electron beam with a voltage of 24.5 kV, a current of 0.6 A and the dimension of 1 mm×0.15 mm was used. To match the size of the sheet beam and obtain high efficiency and high gain, the transverse-oversized barbell type multi-gap resonant cavity was used as the interaction circuit. The 3D PIC simulation results show that more than 500 W of power output can be obtained with the actual cavity loss considered, and the electron efficiency and gain are 3.65% and 38.2 dB respectively. It is found that the power and efficiency are largely restricted by the mode stability of the multi-gap cavity as well as the ohmic loss. The ohmic loss of the output cavity has a significant effect on the final output power which should be given special consideration in engineering design. The research in this paper has laid a good foundation for the development of high frequency sheet beam extended-interaction devices.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":"32 1","pages":"103003-1-103003-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of G-band 500 W sheet beam extended-interaction klystron\",\"authors\":\"Z. Changqing, Feng Jinjun, Cai Jun, Pan Pan\",\"doi\":\"10.11884/HPLPB202032.200195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High power generation in terahertz frequency band is limited by physical mechanism. A G-band sheet beam extended-interaction klystron was designed to demonstrate the power level and the physical factors that affect the performance of the klystron. An elliptical electron beam with a voltage of 24.5 kV, a current of 0.6 A and the dimension of 1 mm×0.15 mm was used. To match the size of the sheet beam and obtain high efficiency and high gain, the transverse-oversized barbell type multi-gap resonant cavity was used as the interaction circuit. The 3D PIC simulation results show that more than 500 W of power output can be obtained with the actual cavity loss considered, and the electron efficiency and gain are 3.65% and 38.2 dB respectively. It is found that the power and efficiency are largely restricted by the mode stability of the multi-gap cavity as well as the ohmic loss. The ohmic loss of the output cavity has a significant effect on the final output power which should be given special consideration in engineering design. The research in this paper has laid a good foundation for the development of high frequency sheet beam extended-interaction devices.\",\"PeriodicalId\":39871,\"journal\":{\"name\":\"强激光与粒子束\",\"volume\":\"32 1\",\"pages\":\"103003-1-103003-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"强激光与粒子束\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.11884/HPLPB202032.200195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202032.200195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Design of G-band 500 W sheet beam extended-interaction klystron
High power generation in terahertz frequency band is limited by physical mechanism. A G-band sheet beam extended-interaction klystron was designed to demonstrate the power level and the physical factors that affect the performance of the klystron. An elliptical electron beam with a voltage of 24.5 kV, a current of 0.6 A and the dimension of 1 mm×0.15 mm was used. To match the size of the sheet beam and obtain high efficiency and high gain, the transverse-oversized barbell type multi-gap resonant cavity was used as the interaction circuit. The 3D PIC simulation results show that more than 500 W of power output can be obtained with the actual cavity loss considered, and the electron efficiency and gain are 3.65% and 38.2 dB respectively. It is found that the power and efficiency are largely restricted by the mode stability of the multi-gap cavity as well as the ohmic loss. The ohmic loss of the output cavity has a significant effect on the final output power which should be given special consideration in engineering design. The research in this paper has laid a good foundation for the development of high frequency sheet beam extended-interaction devices.