{"title":"化学反应网络非线性反应-扩散模型有限差分格式的线性稳定性","authors":"N. Muyinda, B. De Baets, Shodhan Rao","doi":"10.2478/caim-2018-0016","DOIUrl":null,"url":null,"abstract":"Abstract We identify sufficient conditions for the stability of some well-known finite difference schemes for the solution of the multivariable reaction-diffusion equations that model chemical reaction networks. Since the equations are mainly nonlinear, these conditions are obtained through local linearization. A recurrent condition is that the Jacobian matrix of the reaction part evaluated at some positive unknown solution is either D-semi-stable or semi-stable. We demonstrate that for a single reversible chemical reaction whose kinetics are monotone, the Jacobian matrix is D-semi-stable and therefore such schemes are guaranteed to work well.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"9 1","pages":"121 - 140"},"PeriodicalIF":0.3000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the linear stability of some finite difference schemes for nonlinear reaction-diffusion models of chemical reaction networks\",\"authors\":\"N. Muyinda, B. De Baets, Shodhan Rao\",\"doi\":\"10.2478/caim-2018-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We identify sufficient conditions for the stability of some well-known finite difference schemes for the solution of the multivariable reaction-diffusion equations that model chemical reaction networks. Since the equations are mainly nonlinear, these conditions are obtained through local linearization. A recurrent condition is that the Jacobian matrix of the reaction part evaluated at some positive unknown solution is either D-semi-stable or semi-stable. We demonstrate that for a single reversible chemical reaction whose kinetics are monotone, the Jacobian matrix is D-semi-stable and therefore such schemes are guaranteed to work well.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"9 1\",\"pages\":\"121 - 140\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2018-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2018-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the linear stability of some finite difference schemes for nonlinear reaction-diffusion models of chemical reaction networks
Abstract We identify sufficient conditions for the stability of some well-known finite difference schemes for the solution of the multivariable reaction-diffusion equations that model chemical reaction networks. Since the equations are mainly nonlinear, these conditions are obtained through local linearization. A recurrent condition is that the Jacobian matrix of the reaction part evaluated at some positive unknown solution is either D-semi-stable or semi-stable. We demonstrate that for a single reversible chemical reaction whose kinetics are monotone, the Jacobian matrix is D-semi-stable and therefore such schemes are guaranteed to work well.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.