功率预测机器人及平台的发展进展:具有世界水平的长期样机实例

Q3 Energy Journal of Energy Systems Pub Date : 2022-06-30 DOI:10.30521/jes.1021838
Burak Omer Saracoglu
{"title":"功率预测机器人及平台的发展进展:具有世界水平的长期样机实例","authors":"Burak Omer Saracoglu","doi":"10.30521/jes.1021838","DOIUrl":null,"url":null,"abstract":"Global Power Prediction Systems prototype version 2021 is presented with its system decomposition, scope, geographical/administrative/power grid decompositions, and similar. “Welcome”, “sign-up”, “log-in”, and “non-registered user main” web-interfaces are designed as draft on Quant UX. Map canvas is given as world political map with/without world power grid layers on QGIS 3.16.7-Hannover. Data input file is prepared based on several sources (1971-2018). It includes minimum and maximum values due to source value differences. 70/30 principle is applied for train/test splitting (training/testing sets: 1971-2003/2004-2018). 10 models are prepared on R version 4.1.1 with RStudio 2021.09.0+351. These are R::base(lm), R::base(glm), R::tidymodels::parsnip(engine(\"lm\")), R::tidymodels::parsnip(engine(\"glmnet\")) with lasso regularization, R::tidymodels::parsnip(engine(\"glmnet\")) with ridge regularization, R::forecast(auto.arima) auto autoregressive integrated moving average (ARIMA), R::forecast(arima) ARIMA(1,1,2), and ARIMA(1,1,8). Electricity demand in kilowatt-hours at the World level zone for up to 500-years (2019-2519) prediction period with only 1-year interval is forecasted. The best model is the auto ARIMA (mean absolute percentage error MAPE and symmetric mean absolute percentage error SMAPE for minimum and maximum electricity consumption respectively 1,1652; 6,6471; 1,1622; 6,9043). Ex-post and ex-ante plots with 80%-95% confidence intervals are prepared in R::tidyverse::ggplot2. There are 3 alternative scripts (long, short, RStudio Cloud). Their respective runtimes are 41,45; 25,44; and 43,33 seconds. Ex-ante 500-year period (2019-2519) is indicative and informative.","PeriodicalId":52308,"journal":{"name":"Journal of Energy Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development progress of power prediction robot and platform: Its world level very long term prototyping example\",\"authors\":\"Burak Omer Saracoglu\",\"doi\":\"10.30521/jes.1021838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global Power Prediction Systems prototype version 2021 is presented with its system decomposition, scope, geographical/administrative/power grid decompositions, and similar. “Welcome”, “sign-up”, “log-in”, and “non-registered user main” web-interfaces are designed as draft on Quant UX. Map canvas is given as world political map with/without world power grid layers on QGIS 3.16.7-Hannover. Data input file is prepared based on several sources (1971-2018). It includes minimum and maximum values due to source value differences. 70/30 principle is applied for train/test splitting (training/testing sets: 1971-2003/2004-2018). 10 models are prepared on R version 4.1.1 with RStudio 2021.09.0+351. These are R::base(lm), R::base(glm), R::tidymodels::parsnip(engine(\\\"lm\\\")), R::tidymodels::parsnip(engine(\\\"glmnet\\\")) with lasso regularization, R::tidymodels::parsnip(engine(\\\"glmnet\\\")) with ridge regularization, R::forecast(auto.arima) auto autoregressive integrated moving average (ARIMA), R::forecast(arima) ARIMA(1,1,2), and ARIMA(1,1,8). Electricity demand in kilowatt-hours at the World level zone for up to 500-years (2019-2519) prediction period with only 1-year interval is forecasted. The best model is the auto ARIMA (mean absolute percentage error MAPE and symmetric mean absolute percentage error SMAPE for minimum and maximum electricity consumption respectively 1,1652; 6,6471; 1,1622; 6,9043). Ex-post and ex-ante plots with 80%-95% confidence intervals are prepared in R::tidyverse::ggplot2. There are 3 alternative scripts (long, short, RStudio Cloud). Their respective runtimes are 41,45; 25,44; and 43,33 seconds. Ex-ante 500-year period (2019-2519) is indicative and informative.\",\"PeriodicalId\":52308,\"journal\":{\"name\":\"Journal of Energy Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30521/jes.1021838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30521/jes.1021838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

2021年全球电力预测系统原型版本介绍了其系统分解、范围、地理/行政/电网分解等。“欢迎”、“注册”、“登录”和“非注册用户主”网络界面在Quant UX上设计为草稿。地图画布是在QGIS 3.16.7-公告中给出的带有/不带有世界电网图层的世界政治地图。数据输入文件是根据几个来源编制的(1971-2018)。它包括源值差异导致的最小值和最大值。训练/测试拆分采用70/30原则(训练/测试集:1971-2003/2004-2018)。使用RStudio 2021.09.0+351在R版本4.1.1上准备了10个模型。它们是具有套索正则化的R::base(lm)、R::base(glm)、R::tidymodels:parsnip(引擎(“lm”))、R::tidymodels::parsnip。预测了世界水平区域长达500年(2019-2519年)的电力需求,单位为千瓦时,预测期仅为1年。最佳模型是自动ARIMA(最小和最大用电量分别为11652;66471;11622;69043)。在R::tidyverse::ggplot2中准备了置信区间为80%-95%的事后和事前图。有3个备选脚本(长、短、RStudioCloud)。它们各自的运行时间分别为41、45;25,44;43,33秒。事前500年期间(2019-2519)具有指示性和信息性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development progress of power prediction robot and platform: Its world level very long term prototyping example
Global Power Prediction Systems prototype version 2021 is presented with its system decomposition, scope, geographical/administrative/power grid decompositions, and similar. “Welcome”, “sign-up”, “log-in”, and “non-registered user main” web-interfaces are designed as draft on Quant UX. Map canvas is given as world political map with/without world power grid layers on QGIS 3.16.7-Hannover. Data input file is prepared based on several sources (1971-2018). It includes minimum and maximum values due to source value differences. 70/30 principle is applied for train/test splitting (training/testing sets: 1971-2003/2004-2018). 10 models are prepared on R version 4.1.1 with RStudio 2021.09.0+351. These are R::base(lm), R::base(glm), R::tidymodels::parsnip(engine("lm")), R::tidymodels::parsnip(engine("glmnet")) with lasso regularization, R::tidymodels::parsnip(engine("glmnet")) with ridge regularization, R::forecast(auto.arima) auto autoregressive integrated moving average (ARIMA), R::forecast(arima) ARIMA(1,1,2), and ARIMA(1,1,8). Electricity demand in kilowatt-hours at the World level zone for up to 500-years (2019-2519) prediction period with only 1-year interval is forecasted. The best model is the auto ARIMA (mean absolute percentage error MAPE and symmetric mean absolute percentage error SMAPE for minimum and maximum electricity consumption respectively 1,1652; 6,6471; 1,1622; 6,9043). Ex-post and ex-ante plots with 80%-95% confidence intervals are prepared in R::tidyverse::ggplot2. There are 3 alternative scripts (long, short, RStudio Cloud). Their respective runtimes are 41,45; 25,44; and 43,33 seconds. Ex-ante 500-year period (2019-2519) is indicative and informative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Systems
Journal of Energy Systems Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.60
自引率
0.00%
发文量
29
期刊最新文献
A new capacitive inductive system design for LASER-induced kilotesla magnetic field generation Efficiency analysis of fixed and axis tracking options of photovoltaic systems to be installed in a marina Cost optimization of oil type distribution transformer using multi-objective genetic algorithm Innovative approaches and modified criteria to improve a thermodynamic efficiency of trigeneration plants Identification of Vibration for Balancing in Fehn Pollux Ship with ECO Flettner Rotor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1