F. Tiausas, K. Yasumoto, J. P. Talusan, H. Yamana, H. Yamaguchi, Shameek Bhattacharjee, Abhishek Dubey, Sajal K. Das
{"title":"HPRoP:智能城市的分层隐私保护路线规划","authors":"F. Tiausas, K. Yasumoto, J. P. Talusan, H. Yamana, H. Yamaguchi, Shameek Bhattacharjee, Abhishek Dubey, Sajal K. Das","doi":"10.1145/3616874","DOIUrl":null,"url":null,"abstract":"Route Planning Systems (RPS) are a core component of autonomous personal transport systems essential for safe and efficient navigation of dynamic urban environments with the support of edge-based smart city infrastructure, but they also raise concerns about user route privacy in the context of both privately-owned and commercial vehicles. Numerous high profile data breaches in recent years have fortunately motivated research on privacy-preserving RPS, but most of them are rendered impractical by greatly increased communication and processing overhead. We address this by proposing an approach called Hierarchical Privacy-Preserving Route Planning (HPRoP) which divides and distributes the route planning task across multiple levels, and protects locations along the entire route. This is done by combining Inertial Flow partitioning, Private Information Retrieval (PIR), and Edge Computing techniques with our novel route planning heuristic algorithm. Normalized metrics were also formulated to quantify the privacy of the source/destination points (endpoint location privacy) and the route itself (route privacy). Evaluation on a simulated road network showed that HPRoP reliably produces routes differing only by \\(\\le 20\\% \\) in length from optimal shortest paths, with completion times within ∼ 25 seconds which is reasonable for a PIR-based approach. On top of this, more than half of the produced routes achieved near-optimal endpoint location privacy (∼ 1.0) and good route privacy (≥ 0.8).","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities\",\"authors\":\"F. Tiausas, K. Yasumoto, J. P. Talusan, H. Yamana, H. Yamaguchi, Shameek Bhattacharjee, Abhishek Dubey, Sajal K. Das\",\"doi\":\"10.1145/3616874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Route Planning Systems (RPS) are a core component of autonomous personal transport systems essential for safe and efficient navigation of dynamic urban environments with the support of edge-based smart city infrastructure, but they also raise concerns about user route privacy in the context of both privately-owned and commercial vehicles. Numerous high profile data breaches in recent years have fortunately motivated research on privacy-preserving RPS, but most of them are rendered impractical by greatly increased communication and processing overhead. We address this by proposing an approach called Hierarchical Privacy-Preserving Route Planning (HPRoP) which divides and distributes the route planning task across multiple levels, and protects locations along the entire route. This is done by combining Inertial Flow partitioning, Private Information Retrieval (PIR), and Edge Computing techniques with our novel route planning heuristic algorithm. Normalized metrics were also formulated to quantify the privacy of the source/destination points (endpoint location privacy) and the route itself (route privacy). Evaluation on a simulated road network showed that HPRoP reliably produces routes differing only by \\\\(\\\\le 20\\\\% \\\\) in length from optimal shortest paths, with completion times within ∼ 25 seconds which is reasonable for a PIR-based approach. On top of this, more than half of the produced routes achieved near-optimal endpoint location privacy (∼ 1.0) and good route privacy (≥ 0.8).\",\"PeriodicalId\":7055,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3616874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3616874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
HPRoP: Hierarchical Privacy-Preserving Route Planning for Smart Cities
Route Planning Systems (RPS) are a core component of autonomous personal transport systems essential for safe and efficient navigation of dynamic urban environments with the support of edge-based smart city infrastructure, but they also raise concerns about user route privacy in the context of both privately-owned and commercial vehicles. Numerous high profile data breaches in recent years have fortunately motivated research on privacy-preserving RPS, but most of them are rendered impractical by greatly increased communication and processing overhead. We address this by proposing an approach called Hierarchical Privacy-Preserving Route Planning (HPRoP) which divides and distributes the route planning task across multiple levels, and protects locations along the entire route. This is done by combining Inertial Flow partitioning, Private Information Retrieval (PIR), and Edge Computing techniques with our novel route planning heuristic algorithm. Normalized metrics were also formulated to quantify the privacy of the source/destination points (endpoint location privacy) and the route itself (route privacy). Evaluation on a simulated road network showed that HPRoP reliably produces routes differing only by \(\le 20\% \) in length from optimal shortest paths, with completion times within ∼ 25 seconds which is reasonable for a PIR-based approach. On top of this, more than half of the produced routes achieved near-optimal endpoint location privacy (∼ 1.0) and good route privacy (≥ 0.8).