{"title":"集合经济场景生成器:团结造就力量","authors":"Jean‐François Bégin","doi":"10.1080/10920277.2022.2100425","DOIUrl":null,"url":null,"abstract":"Over the last 40 years, various frameworks have been proposed to model economic and financial variables relevant to actuaries. These models are helpful, but searching for a unique model that gives optimal forecasting performance can be frustrating and ultimately futile. This study therefore investigates whether we can create better, more reliable economic scenario generators by combining them. We first consider eight prominent economic scenario generators and apply Bayesian estimation techniques to them, thus allowing us to account for parameter uncertainty. We then rely on predictive distribution stacking to obtain optimal model weights that prescribe how the models should be averaged. The weights are constructed in a leave-future-out fashion to build truly out-of-sample forecasts. An extensive empirical study based on three economies—the United States, Canada, and the United Kingdom—and data from 1992 to 2021 is performed. We find that the optimal weights change over time and differ from one economy to another. The out-of-sample behavior of the ensemble model compares favorably to the other eight models: the ensemble model’s performance is substantially better than that of the worse models and comparable to that of the better models. Creating ensembles is thus beneficial from an out-of-sample perspective because it allows for robust and reasonable forecasts.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensemble Economic Scenario Generators: Unity Makes Strength\",\"authors\":\"Jean‐François Bégin\",\"doi\":\"10.1080/10920277.2022.2100425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last 40 years, various frameworks have been proposed to model economic and financial variables relevant to actuaries. These models are helpful, but searching for a unique model that gives optimal forecasting performance can be frustrating and ultimately futile. This study therefore investigates whether we can create better, more reliable economic scenario generators by combining them. We first consider eight prominent economic scenario generators and apply Bayesian estimation techniques to them, thus allowing us to account for parameter uncertainty. We then rely on predictive distribution stacking to obtain optimal model weights that prescribe how the models should be averaged. The weights are constructed in a leave-future-out fashion to build truly out-of-sample forecasts. An extensive empirical study based on three economies—the United States, Canada, and the United Kingdom—and data from 1992 to 2021 is performed. We find that the optimal weights change over time and differ from one economy to another. The out-of-sample behavior of the ensemble model compares favorably to the other eight models: the ensemble model’s performance is substantially better than that of the worse models and comparable to that of the better models. Creating ensembles is thus beneficial from an out-of-sample perspective because it allows for robust and reasonable forecasts.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2022.2100425\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2100425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ensemble Economic Scenario Generators: Unity Makes Strength
Over the last 40 years, various frameworks have been proposed to model economic and financial variables relevant to actuaries. These models are helpful, but searching for a unique model that gives optimal forecasting performance can be frustrating and ultimately futile. This study therefore investigates whether we can create better, more reliable economic scenario generators by combining them. We first consider eight prominent economic scenario generators and apply Bayesian estimation techniques to them, thus allowing us to account for parameter uncertainty. We then rely on predictive distribution stacking to obtain optimal model weights that prescribe how the models should be averaged. The weights are constructed in a leave-future-out fashion to build truly out-of-sample forecasts. An extensive empirical study based on three economies—the United States, Canada, and the United Kingdom—and data from 1992 to 2021 is performed. We find that the optimal weights change over time and differ from one economy to another. The out-of-sample behavior of the ensemble model compares favorably to the other eight models: the ensemble model’s performance is substantially better than that of the worse models and comparable to that of the better models. Creating ensembles is thus beneficial from an out-of-sample perspective because it allows for robust and reasonable forecasts.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.