{"title":"用于高效翻译的合成信使核糖核酸的设计","authors":"Masahito Inagaki, Mizuki Tada, H. Abe","doi":"10.2745/dds.37.196","DOIUrl":null,"url":null,"abstract":"Recently messenger RNA (mRNA)therapeutics is received much attention as one of the vaccination therapies to compete against the coronavirus disease 2019(COVID-19)pandemic. DDS mRNA therapeutics are generally produced by in vitro transcription utilizing RNA polymerase mediated elongation. However, its purity, stability, and protein synthesis ability, are difficult to be precisely controlled, which is pointed out as drawbacks that must be overcome. To overcome these issues, the introduction of chemically modified nucleic acids is focusing attention. However, it is difficult to flexible molecular design due to the requirement of RNA polymerase recognition ability of chemically modified nucleic acids under in vitro transcription reaction. In the future, the development of a new mRNA design concept based on a flexible molecular design by the progress of chemically modified mRNA therapeutics synthesis method. Under the situation, the authors are focusing on the translation mechanism of mRNA and proposing a new mRNA molecular design to accelerate the translation reaction cycle. In this paper, we introduce an update on therapeutic mRNA design. © 2022, Japan Society of Drug Delivery System. All rights reserved.","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Synthetic mRNAs for Highly Efficient Translation\",\"authors\":\"Masahito Inagaki, Mizuki Tada, H. Abe\",\"doi\":\"10.2745/dds.37.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently messenger RNA (mRNA)therapeutics is received much attention as one of the vaccination therapies to compete against the coronavirus disease 2019(COVID-19)pandemic. DDS mRNA therapeutics are generally produced by in vitro transcription utilizing RNA polymerase mediated elongation. However, its purity, stability, and protein synthesis ability, are difficult to be precisely controlled, which is pointed out as drawbacks that must be overcome. To overcome these issues, the introduction of chemically modified nucleic acids is focusing attention. However, it is difficult to flexible molecular design due to the requirement of RNA polymerase recognition ability of chemically modified nucleic acids under in vitro transcription reaction. In the future, the development of a new mRNA design concept based on a flexible molecular design by the progress of chemically modified mRNA therapeutics synthesis method. Under the situation, the authors are focusing on the translation mechanism of mRNA and proposing a new mRNA molecular design to accelerate the translation reaction cycle. In this paper, we introduce an update on therapeutic mRNA design. © 2022, Japan Society of Drug Delivery System. All rights reserved.\",\"PeriodicalId\":11331,\"journal\":{\"name\":\"Drug Delivery System\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2745/dds.37.196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2745/dds.37.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Design of Synthetic mRNAs for Highly Efficient Translation
Recently messenger RNA (mRNA)therapeutics is received much attention as one of the vaccination therapies to compete against the coronavirus disease 2019(COVID-19)pandemic. DDS mRNA therapeutics are generally produced by in vitro transcription utilizing RNA polymerase mediated elongation. However, its purity, stability, and protein synthesis ability, are difficult to be precisely controlled, which is pointed out as drawbacks that must be overcome. To overcome these issues, the introduction of chemically modified nucleic acids is focusing attention. However, it is difficult to flexible molecular design due to the requirement of RNA polymerase recognition ability of chemically modified nucleic acids under in vitro transcription reaction. In the future, the development of a new mRNA design concept based on a flexible molecular design by the progress of chemically modified mRNA therapeutics synthesis method. Under the situation, the authors are focusing on the translation mechanism of mRNA and proposing a new mRNA molecular design to accelerate the translation reaction cycle. In this paper, we introduce an update on therapeutic mRNA design. © 2022, Japan Society of Drug Delivery System. All rights reserved.