Mounir Lahlouh , Raphaël Blanc , Michel Piotin , Jérôme Szewczyk , Nicolas Passat , Yasmina Chenoune
{"title":"基于卷积神经网络的三维旋转血管造影图像脑AVM分割","authors":"Mounir Lahlouh , Raphaël Blanc , Michel Piotin , Jérôme Szewczyk , Nicolas Passat , Yasmina Chenoune","doi":"10.1016/j.neuri.2023.100138","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><p>3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM.</p></div><div><h3>Methods</h3><p>A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model.</p></div><div><h3>Results</h3><p>The developed network was able to achieve the segmentation of the vessels and the malformation and significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVM patients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians.</p></div><div><h3>Conclusions</h3><p>This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 3","pages":"Article 100138"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cerebral AVM segmentation from 3D rotational angiography images by convolutional neural networks\",\"authors\":\"Mounir Lahlouh , Raphaël Blanc , Michel Piotin , Jérôme Szewczyk , Nicolas Passat , Yasmina Chenoune\",\"doi\":\"10.1016/j.neuri.2023.100138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective</h3><p>3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM.</p></div><div><h3>Methods</h3><p>A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model.</p></div><div><h3>Results</h3><p>The developed network was able to achieve the segmentation of the vessels and the malformation and significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVM patients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians.</p></div><div><h3>Conclusions</h3><p>This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"3 3\",\"pages\":\"Article 100138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528623000237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528623000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cerebral AVM segmentation from 3D rotational angiography images by convolutional neural networks
Background and objective
3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM.
Methods
A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model.
Results
The developed network was able to achieve the segmentation of the vessels and the malformation and significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVM patients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians.
Conclusions
This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology