H. Amir, Y. Cavaloc, Thomas Crossay, Alexandre Bourles, Simon Gensous, Alexandre Lagrange, V. Burtet-Sarramegna, L. Guentas
{"title":"丛枝菌根真菌在新喀里多尼亚超基性土壤中的重要性和作用","authors":"H. Amir, Y. Cavaloc, Thomas Crossay, Alexandre Bourles, Simon Gensous, Alexandre Lagrange, V. Burtet-Sarramegna, L. Guentas","doi":"10.1080/23818107.2022.2160808","DOIUrl":null,"url":null,"abstract":"ABSTRACT Our knowledge about New Caledonian serpentine ecosystems has increased greatly during the past half-century, mainly thanks to Jaffré’s group. However, research on soil microflora and plant symbionts started only in the nineties and was mainly published during the last two decades. We aim to synthesize these studies, focusing particularly on arbuscular mycorrhizal fungi (AMF). Research on AMF consists firstly of a global and inventory approach aiming to produce a basic but essential lacking knowledge. These studies showed that AMF are abundant in ultramafic soils and concerned nearly all plant species of these ecosystems. Even Ni-hyperaccumulator plants and sedges, generally considered non-mycorrhizal, were found to be functionally colonized by AMF in New Caledonian ultramafic soils. The adaptation of AMF communities to the extreme conditions of these soils led to high levels of metal tolerance (particularly to Ni) and noticeable originality of the taxa. The influence of these symbionts on plant growth and adaptation was assessed in greenhouse and field conditions. An accurate selection of AMF isolates that improve plant growth, and plant metal tolerance was performed. It was demonstrated that combinations of AMF isolates with complementary functional traits showed highly synergistic effects on plant development. Finally, a partnership with a biotechnological company led to the production of an efficient commercial inoculant now used in the ecological restoration of mine-degraded areas. Today studies are focused mainly on the additive effects of AMF and mycorrhiza-helper bacteria.","PeriodicalId":54302,"journal":{"name":"Botany Letters","volume":"170 1","pages":"449 - 458"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Importance and roles of arbuscular mycorrhizal fungi in New Caledonian ultramafic soils\",\"authors\":\"H. Amir, Y. Cavaloc, Thomas Crossay, Alexandre Bourles, Simon Gensous, Alexandre Lagrange, V. Burtet-Sarramegna, L. Guentas\",\"doi\":\"10.1080/23818107.2022.2160808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Our knowledge about New Caledonian serpentine ecosystems has increased greatly during the past half-century, mainly thanks to Jaffré’s group. However, research on soil microflora and plant symbionts started only in the nineties and was mainly published during the last two decades. We aim to synthesize these studies, focusing particularly on arbuscular mycorrhizal fungi (AMF). Research on AMF consists firstly of a global and inventory approach aiming to produce a basic but essential lacking knowledge. These studies showed that AMF are abundant in ultramafic soils and concerned nearly all plant species of these ecosystems. Even Ni-hyperaccumulator plants and sedges, generally considered non-mycorrhizal, were found to be functionally colonized by AMF in New Caledonian ultramafic soils. The adaptation of AMF communities to the extreme conditions of these soils led to high levels of metal tolerance (particularly to Ni) and noticeable originality of the taxa. The influence of these symbionts on plant growth and adaptation was assessed in greenhouse and field conditions. An accurate selection of AMF isolates that improve plant growth, and plant metal tolerance was performed. It was demonstrated that combinations of AMF isolates with complementary functional traits showed highly synergistic effects on plant development. Finally, a partnership with a biotechnological company led to the production of an efficient commercial inoculant now used in the ecological restoration of mine-degraded areas. Today studies are focused mainly on the additive effects of AMF and mycorrhiza-helper bacteria.\",\"PeriodicalId\":54302,\"journal\":{\"name\":\"Botany Letters\",\"volume\":\"170 1\",\"pages\":\"449 - 458\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botany Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/23818107.2022.2160808\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botany Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/23818107.2022.2160808","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Importance and roles of arbuscular mycorrhizal fungi in New Caledonian ultramafic soils
ABSTRACT Our knowledge about New Caledonian serpentine ecosystems has increased greatly during the past half-century, mainly thanks to Jaffré’s group. However, research on soil microflora and plant symbionts started only in the nineties and was mainly published during the last two decades. We aim to synthesize these studies, focusing particularly on arbuscular mycorrhizal fungi (AMF). Research on AMF consists firstly of a global and inventory approach aiming to produce a basic but essential lacking knowledge. These studies showed that AMF are abundant in ultramafic soils and concerned nearly all plant species of these ecosystems. Even Ni-hyperaccumulator plants and sedges, generally considered non-mycorrhizal, were found to be functionally colonized by AMF in New Caledonian ultramafic soils. The adaptation of AMF communities to the extreme conditions of these soils led to high levels of metal tolerance (particularly to Ni) and noticeable originality of the taxa. The influence of these symbionts on plant growth and adaptation was assessed in greenhouse and field conditions. An accurate selection of AMF isolates that improve plant growth, and plant metal tolerance was performed. It was demonstrated that combinations of AMF isolates with complementary functional traits showed highly synergistic effects on plant development. Finally, a partnership with a biotechnological company led to the production of an efficient commercial inoculant now used in the ecological restoration of mine-degraded areas. Today studies are focused mainly on the additive effects of AMF and mycorrhiza-helper bacteria.
Botany LettersAgricultural and Biological Sciences-Plant Science
CiteScore
3.10
自引率
6.70%
发文量
54
期刊介绍:
Botany Letters is an international scientific journal, published by the French Botanical Society (Société botanique de France) in partnership with Taylor & Francis. Botany Letters replaces Acta Botanica Gallica, which was created in 1993, building on over a century of renowned publications by the Société botanique de France.