党参寡糖通过抑制氧化应激、炎症和细胞凋亡对d-半乳糖诱导SD大鼠衰老的干预作用

IF 1.2 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Carbohydrate Chemistry Pub Date : 2021-01-01 DOI:10.1080/07328303.2021.1921786
Jing Zhou , Xue Li , Yanping Wang , Yan Zhang , Xusen Jia , Jingmin Fan , Qiannian Zhang , Fangdi Hu , Wen Li
{"title":"党参寡糖通过抑制氧化应激、炎症和细胞凋亡对d-半乳糖诱导SD大鼠衰老的干预作用","authors":"Jing Zhou ,&nbsp;Xue Li ,&nbsp;Yanping Wang ,&nbsp;Yan Zhang ,&nbsp;Xusen Jia ,&nbsp;Jingmin Fan ,&nbsp;Qiannian Zhang ,&nbsp;Fangdi Hu ,&nbsp;Wen Li","doi":"10.1080/07328303.2021.1921786","DOIUrl":null,"url":null,"abstract":"<div><p>Oligosaccharides are one of the major bioactive components in <em>Codonopsis pilosula</em>. The present study was to investigate the protective effect of <em>C. pilosula</em> oligosaccharides (CPO) on <span>d</span>-galactose (D-Gal)-induced aging and to illuminate the underlying mechanisms. The results indicated that CPO effectively increased the growth rate as indicated by body weight, attenuated the decline of thymus and liver indexes, and mitigated the pathological liver injury compared with model group rats. CPO could elevate the activities of anti-oxidative enzymes, including CAT, GSH-Px, and SOD, and reduce MDA level in serum, improve SOD and GSH-Px activities in liver, down-regulate the phosphorylation of MAPK cascade signal transduction components – ERK, JNK, and p38, and inhibit the activation of downstream NF-κB signaling. In addition, CPO treatment noticeably prevented the overexpression of inflammatory factors such as TNF-α, IL-6, and IL-1β in serum, inhibited the expression of apoptosis-related proteins caspase-3, caspase-9, and the ratio of Bax/Bcl-2 in liver caused by the inflammatory cascade, reduced cell apoptosis, and improved liver damage. The above studies suggested that CPO could effectively mitigate the D-Gal-induced aging, and the underlying mechanism might be closely related to ROS-induced oxidative stress, inflammation, and apoptosis.</p></div>","PeriodicalId":15311,"journal":{"name":"Journal of Carbohydrate Chemistry","volume":"40 1","pages":"Pages 115-134"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07328303.2021.1921786","citationCount":"0","resultStr":"{\"title\":\"Interventional effect of Codonopsis pilosula oligosaccharides against d-galactose-induced aging in SD rats via suppression of oxidative stress, inflammation, and apoptosis\",\"authors\":\"Jing Zhou ,&nbsp;Xue Li ,&nbsp;Yanping Wang ,&nbsp;Yan Zhang ,&nbsp;Xusen Jia ,&nbsp;Jingmin Fan ,&nbsp;Qiannian Zhang ,&nbsp;Fangdi Hu ,&nbsp;Wen Li\",\"doi\":\"10.1080/07328303.2021.1921786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Oligosaccharides are one of the major bioactive components in <em>Codonopsis pilosula</em>. The present study was to investigate the protective effect of <em>C. pilosula</em> oligosaccharides (CPO) on <span>d</span>-galactose (D-Gal)-induced aging and to illuminate the underlying mechanisms. The results indicated that CPO effectively increased the growth rate as indicated by body weight, attenuated the decline of thymus and liver indexes, and mitigated the pathological liver injury compared with model group rats. CPO could elevate the activities of anti-oxidative enzymes, including CAT, GSH-Px, and SOD, and reduce MDA level in serum, improve SOD and GSH-Px activities in liver, down-regulate the phosphorylation of MAPK cascade signal transduction components – ERK, JNK, and p38, and inhibit the activation of downstream NF-κB signaling. In addition, CPO treatment noticeably prevented the overexpression of inflammatory factors such as TNF-α, IL-6, and IL-1β in serum, inhibited the expression of apoptosis-related proteins caspase-3, caspase-9, and the ratio of Bax/Bcl-2 in liver caused by the inflammatory cascade, reduced cell apoptosis, and improved liver damage. The above studies suggested that CPO could effectively mitigate the D-Gal-induced aging, and the underlying mechanism might be closely related to ROS-induced oxidative stress, inflammation, and apoptosis.</p></div>\",\"PeriodicalId\":15311,\"journal\":{\"name\":\"Journal of Carbohydrate Chemistry\",\"volume\":\"40 1\",\"pages\":\"Pages 115-134\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07328303.2021.1921786\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Carbohydrate Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S073283032100001X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carbohydrate Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S073283032100001X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要低聚糖是党参的主要生物活性成分之一。本研究旨在研究毛果寡糖(CPO)对d-半乳糖(d-Gal)诱导的衰老的保护作用,并阐明其潜在机制。结果表明,与模型组大鼠相比,CPO能有效地提高大鼠的生长速度,减轻胸腺和肝脏指标的下降,减轻病理性肝损伤。CPO可提高CAT、GSH-Px和SOD等抗氧化酶的活性,降低血清MDA水平,提高肝脏SOD和GSH-Px活性,下调MAPK级联信号传导成分ERK、JNK和p38的磷酸化,抑制下游NF-κB信号的激活。此外,CPO治疗显著阻止了血清中TNF-α、IL-6和IL-1β等炎症因子的过度表达,抑制了炎症级联反应引起的肝细胞凋亡相关蛋白胱天蛋白酶-3、胱天蛋白酶-9和Bax/Bcl-2的表达,减少了细胞凋亡,改善了肝损伤。上述研究表明,CPO可以有效减轻D-半乳糖诱导的衰老,其潜在机制可能与ROS诱导的氧化应激、炎症和细胞凋亡密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interventional effect of Codonopsis pilosula oligosaccharides against d-galactose-induced aging in SD rats via suppression of oxidative stress, inflammation, and apoptosis

Oligosaccharides are one of the major bioactive components in Codonopsis pilosula. The present study was to investigate the protective effect of C. pilosula oligosaccharides (CPO) on d-galactose (D-Gal)-induced aging and to illuminate the underlying mechanisms. The results indicated that CPO effectively increased the growth rate as indicated by body weight, attenuated the decline of thymus and liver indexes, and mitigated the pathological liver injury compared with model group rats. CPO could elevate the activities of anti-oxidative enzymes, including CAT, GSH-Px, and SOD, and reduce MDA level in serum, improve SOD and GSH-Px activities in liver, down-regulate the phosphorylation of MAPK cascade signal transduction components – ERK, JNK, and p38, and inhibit the activation of downstream NF-κB signaling. In addition, CPO treatment noticeably prevented the overexpression of inflammatory factors such as TNF-α, IL-6, and IL-1β in serum, inhibited the expression of apoptosis-related proteins caspase-3, caspase-9, and the ratio of Bax/Bcl-2 in liver caused by the inflammatory cascade, reduced cell apoptosis, and improved liver damage. The above studies suggested that CPO could effectively mitigate the D-Gal-induced aging, and the underlying mechanism might be closely related to ROS-induced oxidative stress, inflammation, and apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Carbohydrate Chemistry
Journal of Carbohydrate Chemistry 化学-生化与分子生物学
CiteScore
2.10
自引率
0.00%
发文量
20
审稿时长
1 months
期刊介绍: The Journal of Carbohydrate Chemistry serves as an international forum for research advances involving the chemistry and biology of carbohydrates. The following aspects are considered to fall within the scope of this journal: -novel synthetic methods involving carbohydrates, oligosaccharides, and glycoconjugates- the use of chemical methods to address aspects of glycobiology- spectroscopic and crystallographic structure studies of carbohydrates- computational and molecular modeling studies- physicochemical studies involving carbohydrates and the chemistry and biochemistry of carbohydrate polymers.
期刊最新文献
The impacts of benzoyl and benzyl groups on the non-covalent interactions and electronic properties of glycosyl acceptors Chemical modifications of xylan from sugarcane bagasse and their regulatory effects on gut microbiota in mice Stereoselective synthesis of 3-sulfone sugars via cobalt catalysis Synthesis of glycosylphosphatidylinositol analogues with an unnatural β-D-glucosamine-(1→6)-myo-inositol motif Synthesis of 2,3,4-13C-labeled isoflavone 7-O-glucosides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1