Chaitali Mallick, Mitali Mishra, Vivek Asati, Varsha Kashaw, R. Das, A. Iyer, S. Kashaw
{"title":"用于开发新型抗疟原虫药物的吲哚喹啉衍生物的综合计算分析:CoMFA、药效团定位、分子对接和ADMET研究","authors":"Chaitali Mallick, Mitali Mishra, Vivek Asati, Varsha Kashaw, R. Das, A. Iyer, S. Kashaw","doi":"10.2174/1574362416666210906155929","DOIUrl":null,"url":null,"abstract":"\n\n The development of multi-resistant strains of the Plasmodium parasite has become a global problem. Therefore, designing of new antimalarial agents is an exclusive solution.: \n\n\n\n\nTo improve the activity and identify potentially efficacious new antimalarial agents, integrated computational perspectives such as pharmacophore mapping, 3D-QSAR and docking study have been applied to a series of indolo-quinoline derivatives. \n\n\n\n\nThe pharmacophore mapping generated various hypotheses based on key functional features and the best hypothesis ADRRR_1 revealed that indolo-quinoline scaffold is essential for antimalarial activity. 3D-QSAR model was established based on CoMFA and CoMSIA models by using 30 indolo-quinoline analogues as training set and the rest of 19 as test set. \n\n\n\n\nThe molecular field analysis (MFA) with PLS (partial least-squares) method was used to develop significant CoMFA (q2=0.756, r2=0.996) and CoMSIA (q2=0.703, r2=0.812) models. The CoMFA and CoMSIA models showed good predictive ability with r2pred values of 0.9623 and 0.9214 respectively. Docking studies were performed by using pfLDH to identify structural insight into the active site and results signify that the quinoline nitrogen acts as a hydrogen bond acceptor region to facilitate interaction with Glu122. Finally, designed molecules were screened through the ADMET tool to evaluate the pharmacokinetic and drug-likeness parameters. \n\n\n\n\nThus, these studies suggested that established models have good predictability and would help in the optimization of newly designed molecules that may produce potent antimalarial activity. \n\n","PeriodicalId":10868,"journal":{"name":"Current Signal Transduction Therapy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated computational analysis on some Indolo-quinoline derivatives for the development of novel antiplasmodium agents: CoMFA, Pharmacophore mapping, molecular docking and ADMET studies\",\"authors\":\"Chaitali Mallick, Mitali Mishra, Vivek Asati, Varsha Kashaw, R. Das, A. Iyer, S. Kashaw\",\"doi\":\"10.2174/1574362416666210906155929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n The development of multi-resistant strains of the Plasmodium parasite has become a global problem. Therefore, designing of new antimalarial agents is an exclusive solution.: \\n\\n\\n\\n\\nTo improve the activity and identify potentially efficacious new antimalarial agents, integrated computational perspectives such as pharmacophore mapping, 3D-QSAR and docking study have been applied to a series of indolo-quinoline derivatives. \\n\\n\\n\\n\\nThe pharmacophore mapping generated various hypotheses based on key functional features and the best hypothesis ADRRR_1 revealed that indolo-quinoline scaffold is essential for antimalarial activity. 3D-QSAR model was established based on CoMFA and CoMSIA models by using 30 indolo-quinoline analogues as training set and the rest of 19 as test set. \\n\\n\\n\\n\\nThe molecular field analysis (MFA) with PLS (partial least-squares) method was used to develop significant CoMFA (q2=0.756, r2=0.996) and CoMSIA (q2=0.703, r2=0.812) models. The CoMFA and CoMSIA models showed good predictive ability with r2pred values of 0.9623 and 0.9214 respectively. Docking studies were performed by using pfLDH to identify structural insight into the active site and results signify that the quinoline nitrogen acts as a hydrogen bond acceptor region to facilitate interaction with Glu122. Finally, designed molecules were screened through the ADMET tool to evaluate the pharmacokinetic and drug-likeness parameters. \\n\\n\\n\\n\\nThus, these studies suggested that established models have good predictability and would help in the optimization of newly designed molecules that may produce potent antimalarial activity. \\n\\n\",\"PeriodicalId\":10868,\"journal\":{\"name\":\"Current Signal Transduction Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Signal Transduction Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574362416666210906155929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Signal Transduction Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574362416666210906155929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Integrated computational analysis on some Indolo-quinoline derivatives for the development of novel antiplasmodium agents: CoMFA, Pharmacophore mapping, molecular docking and ADMET studies
The development of multi-resistant strains of the Plasmodium parasite has become a global problem. Therefore, designing of new antimalarial agents is an exclusive solution.:
To improve the activity and identify potentially efficacious new antimalarial agents, integrated computational perspectives such as pharmacophore mapping, 3D-QSAR and docking study have been applied to a series of indolo-quinoline derivatives.
The pharmacophore mapping generated various hypotheses based on key functional features and the best hypothesis ADRRR_1 revealed that indolo-quinoline scaffold is essential for antimalarial activity. 3D-QSAR model was established based on CoMFA and CoMSIA models by using 30 indolo-quinoline analogues as training set and the rest of 19 as test set.
The molecular field analysis (MFA) with PLS (partial least-squares) method was used to develop significant CoMFA (q2=0.756, r2=0.996) and CoMSIA (q2=0.703, r2=0.812) models. The CoMFA and CoMSIA models showed good predictive ability with r2pred values of 0.9623 and 0.9214 respectively. Docking studies were performed by using pfLDH to identify structural insight into the active site and results signify that the quinoline nitrogen acts as a hydrogen bond acceptor region to facilitate interaction with Glu122. Finally, designed molecules were screened through the ADMET tool to evaluate the pharmacokinetic and drug-likeness parameters.
Thus, these studies suggested that established models have good predictability and would help in the optimization of newly designed molecules that may produce potent antimalarial activity.
期刊介绍:
In recent years a breakthrough has occurred in our understanding of the molecular pathomechanisms of human diseases whereby most of our diseases are related to intra and intercellular communication disorders. The concept of signal transduction therapy has got into the front line of modern drug research, and a multidisciplinary approach is being used to identify and treat signaling disorders.
The journal publishes timely in-depth reviews, research article and drug clinical trial studies in the field of signal transduction therapy. Thematic issues are also published to cover selected areas of signal transduction therapy. Coverage of the field includes genomics, proteomics, medicinal chemistry and the relevant diseases involved in signaling e.g. cancer, neurodegenerative and inflammatory diseases. Current Signal Transduction Therapy is an essential journal for all involved in drug design and discovery.