不同孔径和速度空心弹丸高速垂直入水的数值研究

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-11-01 DOI:10.47176/jafm.16.11.1961
H. W. Fan, Z. G. Huang, H. Wang, Z. H. Chen, X. Y. Liu, F. J. Xiao, R. X. Qiu
{"title":"不同孔径和速度空心弹丸高速垂直入水的数值研究","authors":"H. W. Fan, Z. G. Huang, H. Wang, Z. H. Chen, X. Y. Liu, F. J. Xiao, R. X. Qiu","doi":"10.47176/jafm.16.11.1961","DOIUrl":null,"url":null,"abstract":"The hollow projectile is a new type of projectile that has complex water entry hydrodynamics characteristics and has attracted significant attention in recent years. As such, it is important to investigate the effects of different entry velocities and aperture diameters on the cavity morphology, cavitation, dynamics, and motion characteristics of hollow projectiles when entering water at high speeds. In this study, four stages of an open cavity, cavity stretching, cavity closure, and cavity contraction in the water entry processes of a hollow projectile at 50–200 m/s and four aperture diameter projectiles at 100 m/s were studied using the volume of fluid (VOF), realizable k-ε turbulence, and Schnerr-Sauer cavitation model. With an increase in the speed, the depth of the cavity closure increases, thereby advancing the closure time. The timing of the surface closure at 50 m/s is clearly different from that at 100–200 m/s. Cavitation is not obvious and is near the cavity wall at 50 m/s, although the entire cavity is almost filled with vapor at 100–200 m/s. The friction resistance has two step points when impacting the water surface and entering the water completely. As the velocity increases or the aperture ratio reduces, the splash is higher, the cavity volume is larger, the cavitation phenomenon is more obvious, the cavity closure time is delayed, and the frictional resistance of the projectile is greater. The results of this study can guide the production and application of hollow projectiles in the future.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of High-Speed Vertical Water Entry of Hollow Projectiles with Different Aperture Sizes and Velocities\",\"authors\":\"H. W. Fan, Z. G. Huang, H. Wang, Z. H. Chen, X. Y. Liu, F. J. Xiao, R. X. Qiu\",\"doi\":\"10.47176/jafm.16.11.1961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hollow projectile is a new type of projectile that has complex water entry hydrodynamics characteristics and has attracted significant attention in recent years. As such, it is important to investigate the effects of different entry velocities and aperture diameters on the cavity morphology, cavitation, dynamics, and motion characteristics of hollow projectiles when entering water at high speeds. In this study, four stages of an open cavity, cavity stretching, cavity closure, and cavity contraction in the water entry processes of a hollow projectile at 50–200 m/s and four aperture diameter projectiles at 100 m/s were studied using the volume of fluid (VOF), realizable k-ε turbulence, and Schnerr-Sauer cavitation model. With an increase in the speed, the depth of the cavity closure increases, thereby advancing the closure time. The timing of the surface closure at 50 m/s is clearly different from that at 100–200 m/s. Cavitation is not obvious and is near the cavity wall at 50 m/s, although the entire cavity is almost filled with vapor at 100–200 m/s. The friction resistance has two step points when impacting the water surface and entering the water completely. As the velocity increases or the aperture ratio reduces, the splash is higher, the cavity volume is larger, the cavitation phenomenon is more obvious, the cavity closure time is delayed, and the frictional resistance of the projectile is greater. The results of this study can guide the production and application of hollow projectiles in the future.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.16.11.1961\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.11.1961","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

空心弹丸是一种具有复杂进水流体力学特性的新型弹丸,近年来引起了人们的广泛关注。因此,研究不同的进入速度和孔径对中空射弹高速进入水中时的空腔形态、空化、动力学和运动特性的影响是很重要的。在本研究中,使用流体体积(VOF)、可实现的k-ε湍流和Schnerr-Sauer空化模型,研究了50–200 m/s下空心弹丸和100 m/s下四孔径弹丸进水过程中的开放空腔、空腔拉伸、空腔闭合和空腔收缩四个阶段。随着速度的增加,空腔闭合的深度增加,从而提前了闭合时间。50 m/s下的表面闭合时间与100–200 m/s下的时间明显不同。空化不明显,在50 m/s的速度下靠近空腔壁,尽管整个空腔几乎充满了100–200 m/s的蒸汽。摩擦阻力在撞击水面和完全进入水中时有两个台阶点。随着速度的增加或孔径比的减小,飞溅越大,空腔体积越大,空化现象越明显,空腔闭合时间延迟,弹丸的摩擦阻力越大。研究结果对今后空心弹的生产和应用具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Study of High-Speed Vertical Water Entry of Hollow Projectiles with Different Aperture Sizes and Velocities
The hollow projectile is a new type of projectile that has complex water entry hydrodynamics characteristics and has attracted significant attention in recent years. As such, it is important to investigate the effects of different entry velocities and aperture diameters on the cavity morphology, cavitation, dynamics, and motion characteristics of hollow projectiles when entering water at high speeds. In this study, four stages of an open cavity, cavity stretching, cavity closure, and cavity contraction in the water entry processes of a hollow projectile at 50–200 m/s and four aperture diameter projectiles at 100 m/s were studied using the volume of fluid (VOF), realizable k-ε turbulence, and Schnerr-Sauer cavitation model. With an increase in the speed, the depth of the cavity closure increases, thereby advancing the closure time. The timing of the surface closure at 50 m/s is clearly different from that at 100–200 m/s. Cavitation is not obvious and is near the cavity wall at 50 m/s, although the entire cavity is almost filled with vapor at 100–200 m/s. The friction resistance has two step points when impacting the water surface and entering the water completely. As the velocity increases or the aperture ratio reduces, the splash is higher, the cavity volume is larger, the cavitation phenomenon is more obvious, the cavity closure time is delayed, and the frictional resistance of the projectile is greater. The results of this study can guide the production and application of hollow projectiles in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1