厄贝沙坦晶体和非晶态的多核固体核磁共振表征

IF 1.8 3区 化学 Q4 CHEMISTRY, PHYSICAL Solid state nuclear magnetic resonance Pub Date : 2022-04-01 DOI:10.1016/j.ssnmr.2022.101783
Marcin Skotnicki , Paul Hodgkinson
{"title":"厄贝沙坦晶体和非晶态的多核固体核磁共振表征","authors":"Marcin Skotnicki ,&nbsp;Paul Hodgkinson","doi":"10.1016/j.ssnmr.2022.101783","DOIUrl":null,"url":null,"abstract":"<div><p><span>Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1</span><em>H</em>- and 2<em>H</em><span><span>- tetrazole </span>tautomers<span> can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous<span> form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using </span></span></span><sup>13</sup>C, <sup>15</sup>N and <sup>1</sup>H solid-state NMR. Variable-temperature <sup>13</sup>C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). <sup>15</sup>N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1<em>H</em>- and 2<em>H</em>-tetrazole tautomers. Static <sup>1</sup><span>H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"118 ","pages":"Article 101783"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of crystalline and amorphous forms of irbesartan by multi-nuclear solid-state NMR\",\"authors\":\"Marcin Skotnicki ,&nbsp;Paul Hodgkinson\",\"doi\":\"10.1016/j.ssnmr.2022.101783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1</span><em>H</em>- and 2<em>H</em><span><span>- tetrazole </span>tautomers<span> can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous<span> form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using </span></span></span><sup>13</sup>C, <sup>15</sup>N and <sup>1</sup>H solid-state NMR. Variable-temperature <sup>13</sup>C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). <sup>15</sup>N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1<em>H</em>- and 2<em>H</em>-tetrazole tautomers. Static <sup>1</sup><span>H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.</span></p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"118 \",\"pages\":\"Article 101783\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204022000121\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204022000121","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

厄贝沙坦(IRB)是一种降压药,具有罕见的血管硬化现象;它的1H-和2H-四唑互变异构体可以被分离成不同的晶体形式。晶体形式的IRB是难溶的,因此无定形是潜在的兴趣,因为它的溶解速度更快。非晶IRB中的互变异构形式和氢键性质尚不清楚。本研究采用13C、15N和1H固体核磁共振对厄贝沙坦的晶型A和非晶型进行了研究。变温13C SSMNR研究表明,IRB的结晶形式存在烷基链无序,这可能解释了文献中与之矛盾的A型(上市形式)晶体结构。15N核磁共振表明,非晶材料含有约2:1比例的1H-和2h -四唑互变异构体。静态1H SSNMR和弛豫时间测量证实了样品的不同分子迁移率,并为玻璃化转变的性质提供了分子水平的见解。SSNMR被证明是研究无序活性药物成分固体状态的有力技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of crystalline and amorphous forms of irbesartan by multi-nuclear solid-state NMR

Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1H- and 2H- tetrazole tautomers can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using 13C, 15N and 1H solid-state NMR. Variable-temperature 13C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). 15N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1H- and 2H-tetrazole tautomers. Static 1H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
9.40%
发文量
42
审稿时长
72 days
期刊介绍: The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.
期刊最新文献
Applications of NMR based methodologies investigating the behavior of lignin and cellulose towards bio-based carbon fibers production 17O NMR relaxation measurements for investigation of molecular dynamics in static solids using sodium nitrate as a model compound Solid-state NMR compositional analysis of sputum from people with cystic fibrosis Elucidating structure and metabolism of insect biomaterials by solid-state NMR Glucose hydrochar consists of linked phenol, furan, arene, alkyl, and ketone structures revealed by advanced solid-state nuclear magnetic resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1