{"title":"S-SNHF:基于情感的社会-神经混合滤波","authors":"L. Berkani, Nassim Boudjenah","doi":"10.1080/03081079.2023.2200248","DOIUrl":null,"url":null,"abstract":"Deep learning has yielded success in many research fields. In the last few years, deep learning techniques have been applied in recommender systems to solve cold start and data sparsity problems. However, only a few attempts have been made in social-based recommender systems. In this study, we address this issue and propose a novel recommendation model called Sentiment based Social Neural Hybrid Filtering (S-SNHF). This model combines collaborative and content-based filtering with social information using a deep neural architecture based on Generalized Matrix Factorization (GMF) and Hybrid Multilayer Perceptron (HybMLP). Furthermore, for achieving higher recommendation reliability, the hybrid sentiment analysis model is integrated to analyse users’ opinions and infer their preferences. The results of the empirical study performed with three popular datasets show the contribution of both, social information and sentiment analysis on the recommendation performance and that our approach achieves significantly better recommendation accuracy, compared with state-of-the-art recommendation methods.","PeriodicalId":50322,"journal":{"name":"International Journal of General Systems","volume":"52 1","pages":"297 - 325"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"S-SNHF: sentiment based social neural hybrid filtering\",\"authors\":\"L. Berkani, Nassim Boudjenah\",\"doi\":\"10.1080/03081079.2023.2200248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has yielded success in many research fields. In the last few years, deep learning techniques have been applied in recommender systems to solve cold start and data sparsity problems. However, only a few attempts have been made in social-based recommender systems. In this study, we address this issue and propose a novel recommendation model called Sentiment based Social Neural Hybrid Filtering (S-SNHF). This model combines collaborative and content-based filtering with social information using a deep neural architecture based on Generalized Matrix Factorization (GMF) and Hybrid Multilayer Perceptron (HybMLP). Furthermore, for achieving higher recommendation reliability, the hybrid sentiment analysis model is integrated to analyse users’ opinions and infer their preferences. The results of the empirical study performed with three popular datasets show the contribution of both, social information and sentiment analysis on the recommendation performance and that our approach achieves significantly better recommendation accuracy, compared with state-of-the-art recommendation methods.\",\"PeriodicalId\":50322,\"journal\":{\"name\":\"International Journal of General Systems\",\"volume\":\"52 1\",\"pages\":\"297 - 325\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/03081079.2023.2200248\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/03081079.2023.2200248","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
S-SNHF: sentiment based social neural hybrid filtering
Deep learning has yielded success in many research fields. In the last few years, deep learning techniques have been applied in recommender systems to solve cold start and data sparsity problems. However, only a few attempts have been made in social-based recommender systems. In this study, we address this issue and propose a novel recommendation model called Sentiment based Social Neural Hybrid Filtering (S-SNHF). This model combines collaborative and content-based filtering with social information using a deep neural architecture based on Generalized Matrix Factorization (GMF) and Hybrid Multilayer Perceptron (HybMLP). Furthermore, for achieving higher recommendation reliability, the hybrid sentiment analysis model is integrated to analyse users’ opinions and infer their preferences. The results of the empirical study performed with three popular datasets show the contribution of both, social information and sentiment analysis on the recommendation performance and that our approach achieves significantly better recommendation accuracy, compared with state-of-the-art recommendation methods.
期刊介绍:
International Journal of General Systems is a periodical devoted primarily to the publication of original research contributions to system science, basic as well as applied. However, relevant survey articles, invited book reviews, bibliographies, and letters to the editor are also published.
The principal aim of the journal is to promote original systems ideas (concepts, principles, methods, theoretical or experimental results, etc.) that are broadly applicable to various kinds of systems. The term “general system” in the name of the journal is intended to indicate this aim–the orientation to systems ideas that have a general applicability. Typical subject areas covered by the journal include: uncertainty and randomness; fuzziness and imprecision; information; complexity; inductive and deductive reasoning about systems; learning; systems analysis and design; and theoretical as well as experimental knowledge regarding various categories of systems. Submitted research must be well presented and must clearly state the contribution and novelty. Manuscripts dealing with particular kinds of systems which lack general applicability across a broad range of systems should be sent to journals specializing in the respective topics.