自适应模式对亚马逊热带间合流区每日总臭氧柱的预测

Q2 Multidisciplinary Universitas Scientiarum Pub Date : 2019-11-05 DOI:10.11144/javeriana.sc24-3.ampo
Julio César González-Navarrete, Julián Salamanca
{"title":"自适应模式对亚马逊热带间合流区每日总臭氧柱的预测","authors":"Julio César González-Navarrete, Julián Salamanca","doi":"10.11144/javeriana.sc24-3.ampo","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to broaden the scope of a recent adaptive model in order to obtain predictions of total column ozone (TCO) trends over the Amazon Inter-Tropical Confluence Zone (ITCZ). The adaptive model makes daily TCO predictions over the tropical equator-Andes-Region, relying on seasonal patterns and the solar cycle. This study uses daily observations of the sunspot number cycle, given by the World Data Center for the production, preservation and dissemination of the international sunspot number (Royal Observatory of Belgium), and satellite total-column ozone data, collected by NASA (January 1979 to April 2018), for two Colombian locations: one in and one adjacent to the ITCZ. The agreement between daily total-column predictions by the adaptive model and satellite observations is excellent. Daily averaged relative errors around of 3.7 % and 2.8 % for both locations are reported herein.","PeriodicalId":39200,"journal":{"name":"Universitas Scientiarum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive model predictions of daily total column ozone over the Amazon Inter-Tropical Confluence Zone\",\"authors\":\"Julio César González-Navarrete, Julián Salamanca\",\"doi\":\"10.11144/javeriana.sc24-3.ampo\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to broaden the scope of a recent adaptive model in order to obtain predictions of total column ozone (TCO) trends over the Amazon Inter-Tropical Confluence Zone (ITCZ). The adaptive model makes daily TCO predictions over the tropical equator-Andes-Region, relying on seasonal patterns and the solar cycle. This study uses daily observations of the sunspot number cycle, given by the World Data Center for the production, preservation and dissemination of the international sunspot number (Royal Observatory of Belgium), and satellite total-column ozone data, collected by NASA (January 1979 to April 2018), for two Colombian locations: one in and one adjacent to the ITCZ. The agreement between daily total-column predictions by the adaptive model and satellite observations is excellent. Daily averaged relative errors around of 3.7 % and 2.8 % for both locations are reported herein.\",\"PeriodicalId\":39200,\"journal\":{\"name\":\"Universitas Scientiarum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universitas Scientiarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11144/javeriana.sc24-3.ampo\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universitas Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/javeriana.sc24-3.ampo","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是扩大最近的自适应模型的范围,以获得亚马逊热带间汇流带(ITCZ)上空总臭氧柱(TCO)趋势的预测。自适应模型根据季节模式和太阳周期对热带赤道安第斯地区的TCO进行每日预测。这项研究使用了世界数据中心(比利时皇家天文台)为国际太阳黑子数的产生、保存和传播提供的太阳黑子数周期的每日观测结果,以及美国国家航空航天局(1979年1月至2018年4月)收集的哥伦比亚两个地点的卫星总柱臭氧数据:一个在ITCZ内,一个靠近ITCZ。自适应模型的每日总柱预测与卫星观测结果之间的一致性非常好。本文报告了两个位置的日平均相对误差分别为3.7%和2.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive model predictions of daily total column ozone over the Amazon Inter-Tropical Confluence Zone
The aim of this paper is to broaden the scope of a recent adaptive model in order to obtain predictions of total column ozone (TCO) trends over the Amazon Inter-Tropical Confluence Zone (ITCZ). The adaptive model makes daily TCO predictions over the tropical equator-Andes-Region, relying on seasonal patterns and the solar cycle. This study uses daily observations of the sunspot number cycle, given by the World Data Center for the production, preservation and dissemination of the international sunspot number (Royal Observatory of Belgium), and satellite total-column ozone data, collected by NASA (January 1979 to April 2018), for two Colombian locations: one in and one adjacent to the ITCZ. The agreement between daily total-column predictions by the adaptive model and satellite observations is excellent. Daily averaged relative errors around of 3.7 % and 2.8 % for both locations are reported herein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Universitas Scientiarum
Universitas Scientiarum Multidisciplinary-Multidisciplinary
CiteScore
1.20
自引率
0.00%
发文量
9
审稿时长
15 weeks
期刊最新文献
Development of a Bioreactor-Based Model for low-density polyethylene (LDPE) Biodegradation by Aspergillus brasiliensis Optimization of a novel Renealmia ligulata (Zingiberaceae) essential oil extraction method through microwave-assisted hydrodistillation Avoidance Spectrum of Alexandroff Spaces Study of a lytic bacteriophage as a tool for the control of Salmonella Gallinarum in layer poultry Genetic Editing with CRISPR Cas9: recent Biomedical and Biotechnological Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1