富含锰和铜盐的高渗海水溶液的有效性和安全性评价

S. Constant, A. Saaid, M. Jiménez-Chobillon
{"title":"富含锰和铜盐的高渗海水溶液的有效性和安全性评价","authors":"S. Constant, A. Saaid, M. Jiménez-Chobillon","doi":"10.4193/RHINOL/21.021","DOIUrl":null,"url":null,"abstract":"Background: Nasal irrigation is commonly recommended as an adjuvant treatment for blocked nose. In the present study, the safety and efficacy profile of Stérimar Blocked Nose (SBN), a hypertonic seawater solution enriched with manganese and copper salts, has been evaluated on nasal epithelium, in vitro. Methodology: 3D reconstituted human nasal epithelium tissue model, MucilAir™, has been used to investigate the safety of SBN on nasal epithelium by measuring trans-epithelial electrical resistance (TEER), cytotoxicity (lactate dehydrogenase (LDH) release) and phlogosis-related effects (interleukin-8 secretion). Efficacy assessment was measured by ciliary beat frequency (CBF), mucociliary clearance (MCC) and antimicrobial activities (against Staphylococcus aureus and Pseudomonas aeruginosa). Results: Four-day SBN treatment did not compromise the nasal epithelium integrity as TEER values were over the tissue integrity limit. SBN treatment did not exert cytotoxic (LDH release) or pro-inflammatory effects (IL-8 secretion). SBN treatment significantly increased the CBF and MCC rates compared to untreated cells. SBN treatment exerted a bactericidal effect on S. aureus and P. aeruginosa cultures, whereas seawater not enriched in copper and manganese had only a bacteriostatic effect. Conclusions: The results demonstrate that SBN is a safe formula for use on human nasal epithelium. The results also suggest a better potential therapeutic role for SBN in comparison to not-enriched seawater when used to control nasal congestion and inhibit bacterial growth which may cause nasal congestion.","PeriodicalId":74737,"journal":{"name":"Rhinology online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficacy and safety evaluation of a hypertonic seawater solution enriched with manganese and copper salts\",\"authors\":\"S. Constant, A. Saaid, M. Jiménez-Chobillon\",\"doi\":\"10.4193/RHINOL/21.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Nasal irrigation is commonly recommended as an adjuvant treatment for blocked nose. In the present study, the safety and efficacy profile of Stérimar Blocked Nose (SBN), a hypertonic seawater solution enriched with manganese and copper salts, has been evaluated on nasal epithelium, in vitro. Methodology: 3D reconstituted human nasal epithelium tissue model, MucilAir™, has been used to investigate the safety of SBN on nasal epithelium by measuring trans-epithelial electrical resistance (TEER), cytotoxicity (lactate dehydrogenase (LDH) release) and phlogosis-related effects (interleukin-8 secretion). Efficacy assessment was measured by ciliary beat frequency (CBF), mucociliary clearance (MCC) and antimicrobial activities (against Staphylococcus aureus and Pseudomonas aeruginosa). Results: Four-day SBN treatment did not compromise the nasal epithelium integrity as TEER values were over the tissue integrity limit. SBN treatment did not exert cytotoxic (LDH release) or pro-inflammatory effects (IL-8 secretion). SBN treatment significantly increased the CBF and MCC rates compared to untreated cells. SBN treatment exerted a bactericidal effect on S. aureus and P. aeruginosa cultures, whereas seawater not enriched in copper and manganese had only a bacteriostatic effect. Conclusions: The results demonstrate that SBN is a safe formula for use on human nasal epithelium. The results also suggest a better potential therapeutic role for SBN in comparison to not-enriched seawater when used to control nasal congestion and inhibit bacterial growth which may cause nasal congestion.\",\"PeriodicalId\":74737,\"journal\":{\"name\":\"Rhinology online\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rhinology online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4193/RHINOL/21.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhinology online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4193/RHINOL/21.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:鼻腔冲洗术通常被推荐作为鼻塞的辅助治疗方法。在本研究中,Stérimar Blocked Nose(SBN)是一种富含锰和铜盐的高渗海水溶液,其安全性和有效性已在鼻上皮细胞上进行了体外评估。方法:三维重建人鼻上皮组织模型,MucilAir™, 已用于通过测量跨上皮电阻(TEER)、细胞毒性(乳酸脱氢酶(LDH)释放)和根皮炎相关作用(白细胞介素-8分泌)来研究SBN对鼻上皮的安全性。疗效评估通过纤毛搏动频率(CBF)、粘膜纤毛清除率(MCC)和抗菌活性(对抗金黄色葡萄球菌和铜绿假单胞菌)进行测量。结果:四天SBN治疗没有损害鼻上皮的完整性,因为TEER值超过了组织完整性极限。SBN治疗没有发挥细胞毒性(LDH释放)或促炎作用(IL-8分泌)。与未处理的细胞相比,SBN处理显著增加了CBF和MCC的发生率。SBN处理对金黄色葡萄球菌和铜绿假单胞菌培养物具有杀菌作用,而不富含铜和锰的海水仅具有抑菌作用。结论:结果表明SBN是一种安全的用于人鼻上皮的配方。结果还表明,当用于控制鼻塞和抑制可能导致鼻塞的细菌生长时,与未富集的海水相比,SBN具有更好的潜在治疗作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficacy and safety evaluation of a hypertonic seawater solution enriched with manganese and copper salts
Background: Nasal irrigation is commonly recommended as an adjuvant treatment for blocked nose. In the present study, the safety and efficacy profile of Stérimar Blocked Nose (SBN), a hypertonic seawater solution enriched with manganese and copper salts, has been evaluated on nasal epithelium, in vitro. Methodology: 3D reconstituted human nasal epithelium tissue model, MucilAir™, has been used to investigate the safety of SBN on nasal epithelium by measuring trans-epithelial electrical resistance (TEER), cytotoxicity (lactate dehydrogenase (LDH) release) and phlogosis-related effects (interleukin-8 secretion). Efficacy assessment was measured by ciliary beat frequency (CBF), mucociliary clearance (MCC) and antimicrobial activities (against Staphylococcus aureus and Pseudomonas aeruginosa). Results: Four-day SBN treatment did not compromise the nasal epithelium integrity as TEER values were over the tissue integrity limit. SBN treatment did not exert cytotoxic (LDH release) or pro-inflammatory effects (IL-8 secretion). SBN treatment significantly increased the CBF and MCC rates compared to untreated cells. SBN treatment exerted a bactericidal effect on S. aureus and P. aeruginosa cultures, whereas seawater not enriched in copper and manganese had only a bacteriostatic effect. Conclusions: The results demonstrate that SBN is a safe formula for use on human nasal epithelium. The results also suggest a better potential therapeutic role for SBN in comparison to not-enriched seawater when used to control nasal congestion and inhibit bacterial growth which may cause nasal congestion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
COVID-19 control protocol for rhinologic surgery Trends in dupilumab persistence among patients with chronic rhinosinusitis with nasal polyps Dupilumab as an emerging treatment for refractory allergic fungal rhinosinusitis: a case series and literature review Capturing qualitative olfactory dysfunction with PARPHAIT: the parosmia, phantosmia, and anosmia test Prevalence of smell and taste dysfunction in different clinical severity groups of COVID-19 patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1