纤维板模型构建及微波预热实验

IF 0.9 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD Wood Research Pub Date : 2023-04-26 DOI:10.37763/wr.1336-4561/68.2.389402
Chunmei Yang, Zanbin Zhu, Jiuqing Liu, Bo Xue, Yucheng Li
{"title":"纤维板模型构建及微波预热实验","authors":"Chunmei Yang, Zanbin Zhu, Jiuqing Liu, Bo Xue, Yucheng Li","doi":"10.37763/wr.1336-4561/68.2.389402","DOIUrl":null,"url":null,"abstract":"Microwave heating is a new type of pre-heating for fiberboard mats. Compared to conventional heating, microwave heating is faster and the surface and interior are evenly heated, thus avoiding the phenomenon of premature hardening of the surface layer of the fibreboard mats. In this paper, the heat transfer law of microwave preheated fiberboard mats was analyzed, and a thermodynamic model of fiberboard microwave heating was established. Furthermore, a microwave preheating simulation was established through COMSOL software; the temperature distribution of the fiberboard after microwave heating was analyzed and the reliability of the simulation model was verified through experiments. The temperature changes of fibers in the two preheating methods were compared by direct contact preheating experiment and microwave preheating experiment. Microwave preheating is more efficient than direct contact preheating, and more uniform temperature distribution in fiberboard mats. The core layer temperature is higher than the surface layer temperature, which can shorten the preheating time. By comparing the COMSOL model with the test, the model can basically reflect the temperature change law of microwave preheating, and the temperature of each layer of the slab is more uniform in the model simulation process. The heating law of the fiberboard was obtained, which provided a theoretical reference for the industrialized microwave preheating of fiberboard.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MODEL CONSTRUCTION AND MICROWAVE PREHEATING EXPERIMENTS USING FIBERBOARD\",\"authors\":\"Chunmei Yang, Zanbin Zhu, Jiuqing Liu, Bo Xue, Yucheng Li\",\"doi\":\"10.37763/wr.1336-4561/68.2.389402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave heating is a new type of pre-heating for fiberboard mats. Compared to conventional heating, microwave heating is faster and the surface and interior are evenly heated, thus avoiding the phenomenon of premature hardening of the surface layer of the fibreboard mats. In this paper, the heat transfer law of microwave preheated fiberboard mats was analyzed, and a thermodynamic model of fiberboard microwave heating was established. Furthermore, a microwave preheating simulation was established through COMSOL software; the temperature distribution of the fiberboard after microwave heating was analyzed and the reliability of the simulation model was verified through experiments. The temperature changes of fibers in the two preheating methods were compared by direct contact preheating experiment and microwave preheating experiment. Microwave preheating is more efficient than direct contact preheating, and more uniform temperature distribution in fiberboard mats. The core layer temperature is higher than the surface layer temperature, which can shorten the preheating time. By comparing the COMSOL model with the test, the model can basically reflect the temperature change law of microwave preheating, and the temperature of each layer of the slab is more uniform in the model simulation process. The heating law of the fiberboard was obtained, which provided a theoretical reference for the industrialized microwave preheating of fiberboard.\",\"PeriodicalId\":23786,\"journal\":{\"name\":\"Wood Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37763/wr.1336-4561/68.2.389402\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/wr.1336-4561/68.2.389402","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 1

摘要

微波加热是纤维板毡的一种新型预热方式。与传统加热相比,微波加热更快,表面和内部受热均匀,避免了纤维板毡表层过早硬化的现象。分析了微波预热纤维板毡的传热规律,建立了纤维板微波加热的热力学模型。此外,通过COMSOL软件建立了微波预热仿真;分析了微波加热后纤维板的温度分布,并通过实验验证了模拟模型的可靠性。通过直接接触预热实验和微波预热实验比较了两种预热方式下纤维的温度变化。微波预热比直接接触预热更有效,并且纤维板垫中的温度分布更均匀。芯层温度高于表层温度,可以缩短预热时间。通过将COMSOL模型与试验进行比较,该模型能够基本反映微波预热的温度变化规律,并且在模型模拟过程中,板坯各层的温度更加均匀。得出了纤维板的加热规律,为纤维板的工业化微波预热提供了理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MODEL CONSTRUCTION AND MICROWAVE PREHEATING EXPERIMENTS USING FIBERBOARD
Microwave heating is a new type of pre-heating for fiberboard mats. Compared to conventional heating, microwave heating is faster and the surface and interior are evenly heated, thus avoiding the phenomenon of premature hardening of the surface layer of the fibreboard mats. In this paper, the heat transfer law of microwave preheated fiberboard mats was analyzed, and a thermodynamic model of fiberboard microwave heating was established. Furthermore, a microwave preheating simulation was established through COMSOL software; the temperature distribution of the fiberboard after microwave heating was analyzed and the reliability of the simulation model was verified through experiments. The temperature changes of fibers in the two preheating methods were compared by direct contact preheating experiment and microwave preheating experiment. Microwave preheating is more efficient than direct contact preheating, and more uniform temperature distribution in fiberboard mats. The core layer temperature is higher than the surface layer temperature, which can shorten the preheating time. By comparing the COMSOL model with the test, the model can basically reflect the temperature change law of microwave preheating, and the temperature of each layer of the slab is more uniform in the model simulation process. The heating law of the fiberboard was obtained, which provided a theoretical reference for the industrialized microwave preheating of fiberboard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Research
Wood Research 工程技术-材料科学:纸与木材
CiteScore
2.40
自引率
15.40%
发文量
81
审稿时长
5.4 months
期刊介绍: Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.
期刊最新文献
A NUMERICAL MODEL FOR ANALYZING CROSS LAMINATED TIMBER UNDER OUT OF PLANE LOADING PRELIMINARY STUDY OF DEPENDENCE OF SMOKE AND CARBON MONOXIDE EMISSION ON HEAT RELEASE RATE FROM FAST-GROWING WOOD SPECIES THE USE OF BORIC ACID AND ANTIMONY OXIDE AS AUXILIARY MINERALS WITH HUNTITE HYDROMAGNESITE TO IMPROVE FLAME RETARDANT PROPERTIES OF WOODDUST COMPOSITES ANNUAL GROWTH RING CHARACTERISTICS OF QUERCUS CERRIS (L.) TREES GROWN UNDER DIFFERENT CONDITIONS INCREASING THE EFFICIENCY OF ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSIC MATERIALS BY FREEZING PRETREATMENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1