基于条件生成对抗网络的人脸图像生成与增强

Ainil Mardiah, Sri Hartati, Agus Sihabuddin
{"title":"基于条件生成对抗网络的人脸图像生成与增强","authors":"Ainil Mardiah, Sri Hartati, Agus Sihabuddin","doi":"10.22146/ijccs.58327","DOIUrl":null,"url":null,"abstract":"The accuracy and speed of a single image super-resolution using a convolutional neural network is often a problem in improving finer texture details when using large enhancement factors. Some recent studies have focused on minimal mean square error, resulting in a high peak signal to noise ratio. Generally, although the peak signal to noise ratio has a high value, the output image is less detailed. This shows that the determination of super-resolution is not optimal. Conditional Generative Adversarial Network based on Boundary Equilibrium Generative Adversarial Network, by combining Mean Square Error Loss and GAN Loss as a loss function to optimize the super-resolution model and produce super-resolution images. Also, the generator network is designed with skip connection architecture to increase convergence speed and strengthen feature distribution. Image quality value parameters used in this study are Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The results showed the highest image quality values using dataset validation were 26.55 for PSNR values and 0.93 for SSIM values. The highest image quality values using the testing dataset are 24.56 for the PSNR value and 0.91 for the SSIM value.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face Image Generation and Enhancement Using Conditional Generative Adversarial Network\",\"authors\":\"Ainil Mardiah, Sri Hartati, Agus Sihabuddin\",\"doi\":\"10.22146/ijccs.58327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy and speed of a single image super-resolution using a convolutional neural network is often a problem in improving finer texture details when using large enhancement factors. Some recent studies have focused on minimal mean square error, resulting in a high peak signal to noise ratio. Generally, although the peak signal to noise ratio has a high value, the output image is less detailed. This shows that the determination of super-resolution is not optimal. Conditional Generative Adversarial Network based on Boundary Equilibrium Generative Adversarial Network, by combining Mean Square Error Loss and GAN Loss as a loss function to optimize the super-resolution model and produce super-resolution images. Also, the generator network is designed with skip connection architecture to increase convergence speed and strengthen feature distribution. Image quality value parameters used in this study are Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The results showed the highest image quality values using dataset validation were 26.55 for PSNR values and 0.93 for SSIM values. The highest image quality values using the testing dataset are 24.56 for the PSNR value and 0.91 for the SSIM value.\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijccs.58327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.58327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当使用大的增强因子时,使用卷积神经网络的单个图像超分辨率的准确性和速度在改善更精细的纹理细节方面通常是一个问题。最近的一些研究集中在最小均方误差上,从而导致高峰值信噪比。通常,尽管峰值信噪比具有高值,但是输出图像不太详细。这表明超分辨率的确定不是最优的。条件生成对抗网络基于边界平衡生成对抗网络,通过将均方误差损失和GAN损失作为损失函数来优化超分辨率模型并生成超分辨率图像。此外,生成器网络采用跳接结构设计,以提高收敛速度并加强特征分布。本研究中使用的图像质量值参数是峰值信噪比(PSNR)和结构相似性指数(SSIM)。结果显示,使用数据集验证的最高图像质量值PSNR值为26.55,SSIM值为0.93。使用测试数据集的最高图像质量值对于PSNR值为24.56,对于SSIM值为0.91。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Image Generation and Enhancement Using Conditional Generative Adversarial Network
The accuracy and speed of a single image super-resolution using a convolutional neural network is often a problem in improving finer texture details when using large enhancement factors. Some recent studies have focused on minimal mean square error, resulting in a high peak signal to noise ratio. Generally, although the peak signal to noise ratio has a high value, the output image is less detailed. This shows that the determination of super-resolution is not optimal. Conditional Generative Adversarial Network based on Boundary Equilibrium Generative Adversarial Network, by combining Mean Square Error Loss and GAN Loss as a loss function to optimize the super-resolution model and produce super-resolution images. Also, the generator network is designed with skip connection architecture to increase convergence speed and strengthen feature distribution. Image quality value parameters used in this study are Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The results showed the highest image quality values using dataset validation were 26.55 for PSNR values and 0.93 for SSIM values. The highest image quality values using the testing dataset are 24.56 for the PSNR value and 0.91 for the SSIM value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1