{"title":"使ProB与sw - prolog兼容","authors":"David Geleßus, M. Leuschel","doi":"10.1017/S1471068422000230","DOIUrl":null,"url":null,"abstract":"Abstract Even though the core of the Prolog programming language has been standardized by ISO since 1995, it remains difficult to write complex Prolog programs that can run unmodified on multiple Prolog implementations. Indeed, implementations sometimes deviate from the ISO standard and the standard itself fails to cover many features that are essential in practice. Most Prolog applications thus have to rely on nonstandard features, often making them dependent on one particular Prolog implementation and incompatible with others. We examine one such Prolog application: ProB, which has been developed for over 20 years in SICStus Prolog. The article describes how we managed to refactor the codebase of ProB to also support SWI-Prolog, with the goal of verifying ProB’s results using two independent toolchains. This required a multitude of adjustments, ranging from extending the SICStus emulation in SWI-Prolog on to better modularizing the monolithic ProB codebase. We also describe notable compatibility issues and other differences that we encountered in the process, and how we were able to deal with them with few major code changes.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"22 1","pages":"755 - 769"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Making ProB Compatible with SWI-Prolog\",\"authors\":\"David Geleßus, M. Leuschel\",\"doi\":\"10.1017/S1471068422000230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Even though the core of the Prolog programming language has been standardized by ISO since 1995, it remains difficult to write complex Prolog programs that can run unmodified on multiple Prolog implementations. Indeed, implementations sometimes deviate from the ISO standard and the standard itself fails to cover many features that are essential in practice. Most Prolog applications thus have to rely on nonstandard features, often making them dependent on one particular Prolog implementation and incompatible with others. We examine one such Prolog application: ProB, which has been developed for over 20 years in SICStus Prolog. The article describes how we managed to refactor the codebase of ProB to also support SWI-Prolog, with the goal of verifying ProB’s results using two independent toolchains. This required a multitude of adjustments, ranging from extending the SICStus emulation in SWI-Prolog on to better modularizing the monolithic ProB codebase. We also describe notable compatibility issues and other differences that we encountered in the process, and how we were able to deal with them with few major code changes.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"22 1\",\"pages\":\"755 - 769\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S1471068422000230\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1471068422000230","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Abstract Even though the core of the Prolog programming language has been standardized by ISO since 1995, it remains difficult to write complex Prolog programs that can run unmodified on multiple Prolog implementations. Indeed, implementations sometimes deviate from the ISO standard and the standard itself fails to cover many features that are essential in practice. Most Prolog applications thus have to rely on nonstandard features, often making them dependent on one particular Prolog implementation and incompatible with others. We examine one such Prolog application: ProB, which has been developed for over 20 years in SICStus Prolog. The article describes how we managed to refactor the codebase of ProB to also support SWI-Prolog, with the goal of verifying ProB’s results using two independent toolchains. This required a multitude of adjustments, ranging from extending the SICStus emulation in SWI-Prolog on to better modularizing the monolithic ProB codebase. We also describe notable compatibility issues and other differences that we encountered in the process, and how we were able to deal with them with few major code changes.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.