评价肥胖人体模型在正面雪橇试验中的行为

Hamed Joodaki, B. Gepner, Maika Katagiri, J. Kerrigan
{"title":"评价肥胖人体模型在正面雪橇试验中的行为","authors":"Hamed Joodaki, B. Gepner, Maika Katagiri, J. Kerrigan","doi":"10.1504/ijvs.2021.115890","DOIUrl":null,"url":null,"abstract":"The goal of this study was to assess the behaviour of an obese Human Body Model (HBM) in frontal sled tests. The results of rear-seat sled tests with an obese (BMI = 35) Post Mortem Human Surrogate (PMHS) were used to evaluate the performance of the obese HBM in matching conditions. Also, the responses of a non-obese HBM (BMI = 25) and the obese HBM were compared in a front-seat frontal impact test. In the rear-seat tests, both the obese HBM and the obese PMHS experienced a large forward excursion, delayed lap belt engagement with the pelvis, and a reclined-to-upright torso angle throughout the tests, which were the effects of large body mass and thick flesh. In the front-seat simulations, the obese HBM experienced a larger excursion than the non-obese HBM. The obese HBM can be a useful tool to design and optimise restraint system for front-seat occupants with obesity.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of behaviour of an obese human body model in frontal sled tests\",\"authors\":\"Hamed Joodaki, B. Gepner, Maika Katagiri, J. Kerrigan\",\"doi\":\"10.1504/ijvs.2021.115890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study was to assess the behaviour of an obese Human Body Model (HBM) in frontal sled tests. The results of rear-seat sled tests with an obese (BMI = 35) Post Mortem Human Surrogate (PMHS) were used to evaluate the performance of the obese HBM in matching conditions. Also, the responses of a non-obese HBM (BMI = 25) and the obese HBM were compared in a front-seat frontal impact test. In the rear-seat tests, both the obese HBM and the obese PMHS experienced a large forward excursion, delayed lap belt engagement with the pelvis, and a reclined-to-upright torso angle throughout the tests, which were the effects of large body mass and thick flesh. In the front-seat simulations, the obese HBM experienced a larger excursion than the non-obese HBM. The obese HBM can be a useful tool to design and optimise restraint system for front-seat occupants with obesity.\",\"PeriodicalId\":35143,\"journal\":{\"name\":\"International Journal of Vehicle Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvs.2021.115890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvs.2021.115890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是评估肥胖人体模型(HBM)在额橇测试中的行为。肥胖(BMI=35)死后人类代孕者(PMHS)的后座雪橇测试结果用于评估肥胖HBM在匹配条件下的表现。此外,在前排座椅正面碰撞测试中比较了非肥胖HBM(BMI=25)和肥胖HBM的反应。在后排座椅测试中,肥胖的HBM和肥胖的PMHS在整个测试过程中都经历了大的向前偏移、腰带与骨盆的接合延迟以及躯干倾斜到直立的角度,这是大体重和厚肉的影响。在前排座椅模拟中,肥胖HBM比非肥胖HBM经历了更大的偏移。肥胖HBM可以成为设计和优化肥胖前排座椅乘客约束系统的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of behaviour of an obese human body model in frontal sled tests
The goal of this study was to assess the behaviour of an obese Human Body Model (HBM) in frontal sled tests. The results of rear-seat sled tests with an obese (BMI = 35) Post Mortem Human Surrogate (PMHS) were used to evaluate the performance of the obese HBM in matching conditions. Also, the responses of a non-obese HBM (BMI = 25) and the obese HBM were compared in a front-seat frontal impact test. In the rear-seat tests, both the obese HBM and the obese PMHS experienced a large forward excursion, delayed lap belt engagement with the pelvis, and a reclined-to-upright torso angle throughout the tests, which were the effects of large body mass and thick flesh. In the front-seat simulations, the obese HBM experienced a larger excursion than the non-obese HBM. The obese HBM can be a useful tool to design and optimise restraint system for front-seat occupants with obesity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Safety
International Journal of Vehicle Safety Engineering-Automotive Engineering
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.
期刊最新文献
Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Driving safety of articulated vehicle on a typical interchange Multi-objective optimisation design and fuzzy PID control for racing car variable rear wing system Research on test scenarios of AEB pedestrian system based on knowledge and accident data Relationship between mobile phone addiction and driving accidents in two groups of drivers with and without accidents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1