Mingfeng Zhang, Dali Wang, Yunlu Kang, Jing-Xiang Wu, Fuqiang Yao, Chengfang Pan, Zhiqiang Yan, Chen Song, Lei Chen
{"title":"atOSCA3.1通道的结构","authors":"Mingfeng Zhang, Dali Wang, Yunlu Kang, Jing-Xiang Wu, Fuqiang Yao, Chengfang Pan, Zhiqiang Yan, Chen Song, Lei Chen","doi":"10.2210/PDB5Z1F/PDB","DOIUrl":null,"url":null,"abstract":"Mechanosensitive ion channels convert mechanical stimuli into a flow of ions. These channels are widely distributed from bacteria to higher plants and humans, and are involved in many crucial physiological processes. Here we show that two members of the OSCA protein family in Arabidopsis thaliana, namely AtOSCA1.1 and AtOSCA3.1, belong to a new class of mechanosensitive ion channels. We solve the structure of the AtOSCA1.1 channel at 3.5-A resolution and AtOSCA3.1 at 4.8-A resolution by cryo-electron microscopy. OSCA channels are symmetric dimers that are mediated by cytosolic inter-subunit interactions. Strikingly, they have structural similarity to the mammalian TMEM16 family proteins. Our structural analysis accompanied with electrophysiological studies identifies the ion permeation pathway within each subunit and suggests a conformational change model for activation.","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":"25 1","pages":"850-858"},"PeriodicalIF":16.8000,"publicationDate":"2018-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Structure of atOSCA3.1 channel\",\"authors\":\"Mingfeng Zhang, Dali Wang, Yunlu Kang, Jing-Xiang Wu, Fuqiang Yao, Chengfang Pan, Zhiqiang Yan, Chen Song, Lei Chen\",\"doi\":\"10.2210/PDB5Z1F/PDB\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanosensitive ion channels convert mechanical stimuli into a flow of ions. These channels are widely distributed from bacteria to higher plants and humans, and are involved in many crucial physiological processes. Here we show that two members of the OSCA protein family in Arabidopsis thaliana, namely AtOSCA1.1 and AtOSCA3.1, belong to a new class of mechanosensitive ion channels. We solve the structure of the AtOSCA1.1 channel at 3.5-A resolution and AtOSCA3.1 at 4.8-A resolution by cryo-electron microscopy. OSCA channels are symmetric dimers that are mediated by cytosolic inter-subunit interactions. Strikingly, they have structural similarity to the mammalian TMEM16 family proteins. Our structural analysis accompanied with electrophysiological studies identifies the ion permeation pathway within each subunit and suggests a conformational change model for activation.\",\"PeriodicalId\":18836,\"journal\":{\"name\":\"Nature Structural &Molecular Biology\",\"volume\":\"25 1\",\"pages\":\"850-858\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2018-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural &Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2210/PDB5Z1F/PDB\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2210/PDB5Z1F/PDB","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanosensitive ion channels convert mechanical stimuli into a flow of ions. These channels are widely distributed from bacteria to higher plants and humans, and are involved in many crucial physiological processes. Here we show that two members of the OSCA protein family in Arabidopsis thaliana, namely AtOSCA1.1 and AtOSCA3.1, belong to a new class of mechanosensitive ion channels. We solve the structure of the AtOSCA1.1 channel at 3.5-A resolution and AtOSCA3.1 at 4.8-A resolution by cryo-electron microscopy. OSCA channels are symmetric dimers that are mediated by cytosolic inter-subunit interactions. Strikingly, they have structural similarity to the mammalian TMEM16 family proteins. Our structural analysis accompanied with electrophysiological studies identifies the ion permeation pathway within each subunit and suggests a conformational change model for activation.
期刊介绍:
Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.