{"title":"旋转里程表和对有根树木的操作","authors":"H. Bruin, O. Lukina","doi":"10.4064/fm74-10-2022","DOIUrl":null,"url":null,"abstract":". A rotated odometer is an infinite interval exchange transformation (IET) obtained as a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In this paper, we consider rotated odometers for which the finite IET is of intervals of length 2 − N , for some N ≥ 1. We show that every such system is measurably isomorphic to a Z -action on a rooted tree, and that the unique minimal aperiodic subsystem of this action is always measurably isomorphic to the action of the adding machine. We discuss the applications of this work to the study of group actions on binary trees.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rotated odometers and actions on rooted trees\",\"authors\":\"H. Bruin, O. Lukina\",\"doi\":\"10.4064/fm74-10-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A rotated odometer is an infinite interval exchange transformation (IET) obtained as a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In this paper, we consider rotated odometers for which the finite IET is of intervals of length 2 − N , for some N ≥ 1. We show that every such system is measurably isomorphic to a Z -action on a rooted tree, and that the unique minimal aperiodic subsystem of this action is always measurably isomorphic to the action of the adding machine. We discuss the applications of this work to the study of group actions on binary trees.\",\"PeriodicalId\":55138,\"journal\":{\"name\":\"Fundamenta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm74-10-2022\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm74-10-2022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
. A rotated odometer is an infinite interval exchange transformation (IET) obtained as a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In this paper, we consider rotated odometers for which the finite IET is of intervals of length 2 − N , for some N ≥ 1. We show that every such system is measurably isomorphic to a Z -action on a rooted tree, and that the unique minimal aperiodic subsystem of this action is always measurably isomorphic to the action of the adding machine. We discuss the applications of this work to the study of group actions on binary trees.
期刊介绍:
FUNDAMENTA MATHEMATICAE concentrates on papers devoted to
Set Theory,
Mathematical Logic and Foundations of Mathematics,
Topology and its Interactions with Algebra,
Dynamical Systems.