法国的建筑类型

IF 0.2 Q4 REMOTE SENSING Revue Internationale de Geomatique Pub Date : 2022-07-01 DOI:10.3166/rig31.265-302
Allessandro Araldi, David Emsellem, Giovanni Fusco, A. Tettamanzi, Denis Overal
{"title":"法国的建筑类型","authors":"Allessandro Araldi, David Emsellem, Giovanni Fusco, A. Tettamanzi, Denis Overal","doi":"10.3166/rig31.265-302","DOIUrl":null,"url":null,"abstract":"The identification and description of building typologies play a fundamental role in the understanding of the overall built-up form. A growing body of research is developing and implementing sophisticated, computer-aided protocols for the identification of building typologies. This paper shares the same goal. An innovative data-driven procedure for the unsupervised identification and description of building types and organization is here presented. After a specific pre-processing procedure, we develop an unsupervised clustering combining a new algorithm of Naive Bayes inference and hierarchical ascendant approaches relying on six morphometric features of buildings. This protocol allows us to identify groups of buildings sharing specific similar morphological characteristics and their overall structure at different aggregation levels. The proposed methodology is implemented and evaluated on the overall ordinary (e.g. not-specialized) building stock of France.","PeriodicalId":41172,"journal":{"name":"Revue Internationale de Geomatique","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building types in France\",\"authors\":\"Allessandro Araldi, David Emsellem, Giovanni Fusco, A. Tettamanzi, Denis Overal\",\"doi\":\"10.3166/rig31.265-302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification and description of building typologies play a fundamental role in the understanding of the overall built-up form. A growing body of research is developing and implementing sophisticated, computer-aided protocols for the identification of building typologies. This paper shares the same goal. An innovative data-driven procedure for the unsupervised identification and description of building types and organization is here presented. After a specific pre-processing procedure, we develop an unsupervised clustering combining a new algorithm of Naive Bayes inference and hierarchical ascendant approaches relying on six morphometric features of buildings. This protocol allows us to identify groups of buildings sharing specific similar morphological characteristics and their overall structure at different aggregation levels. The proposed methodology is implemented and evaluated on the overall ordinary (e.g. not-specialized) building stock of France.\",\"PeriodicalId\":41172,\"journal\":{\"name\":\"Revue Internationale de Geomatique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue Internationale de Geomatique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3166/rig31.265-302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Internationale de Geomatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/rig31.265-302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

建筑类型的识别和描述在理解整体建筑形式方面发挥着重要作用。越来越多的研究正在开发和实施复杂的计算机辅助协议,用于识别建筑类型。本文的目标是一致的。本文提出了一种创新的数据驱动程序,用于无监督地识别和描述建筑类型和组织。在经过特定的预处理程序后,我们结合Naive Bayes推理的新算法和基于建筑物六种形态特征的分层上升方法,开发了一种无监督聚类。该协议使我们能够识别具有特定相似形态特征的建筑群及其在不同聚集水平上的整体结构。所提出的方法是根据法国的总体普通(如非专业)建筑存量进行实施和评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building types in France
The identification and description of building typologies play a fundamental role in the understanding of the overall built-up form. A growing body of research is developing and implementing sophisticated, computer-aided protocols for the identification of building typologies. This paper shares the same goal. An innovative data-driven procedure for the unsupervised identification and description of building types and organization is here presented. After a specific pre-processing procedure, we develop an unsupervised clustering combining a new algorithm of Naive Bayes inference and hierarchical ascendant approaches relying on six morphometric features of buildings. This protocol allows us to identify groups of buildings sharing specific similar morphological characteristics and their overall structure at different aggregation levels. The proposed methodology is implemented and evaluated on the overall ordinary (e.g. not-specialized) building stock of France.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extraction et mise en contexte spatial des propositions relatives au transport dans le Grand Débat National Editorial Spatio-temporal pattern detection in spatio-temporal graphs Classification and clustering of buildings for understanding urban dynamics Building types in France
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1