支化醚功能化降低金属酞菁的聚集和配体氧化还原电位

IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Journal of Porphyrins and Phthalocyanines Pub Date : 2023-02-27 DOI:10.1142/s1088424623500141
Declan McKearney, Wen Zhou, Myles Scollon, Taniyuki Furuyama, V. Williams, D. Leznoff
{"title":"支化醚功能化降低金属酞菁的聚集和配体氧化还原电位","authors":"Declan McKearney, Wen Zhou, Myles Scollon, Taniyuki Furuyama, V. Williams, D. Leznoff","doi":"10.1142/s1088424623500141","DOIUrl":null,"url":null,"abstract":"The addition of ether functional groups to a metallophthalocyanine ring is known to significantly decrease the oxidation potentials of the ring. In this light, the impact of the branching of alkyl-ether groups on the electronic properties was investigated via the synthesis of non-peripheral ([Formula: see text]-substituted n-butyl (1), iso-butyl (2) and sec-butyl (3) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanines, in conjunction with Co and Cu metal centers. From 1 to 3 the first and second ring-based oxidation potentials were decreased by 70 mV and 110 mV respectively both for Cu and Co-containing complexes; the UV-visible Q-band maxima only changed by 4-8 nm, consistent with the destabilization of both the HOMO and LUMO, as confirmed by TD-DFT calculations. The reversibility of both redox couples was improved via branching (3) for the Co complexes. All six complexes were structurally characterized, with varying levels and types of ring distortions. All molecules show 1-D supramolecular stacking, but for n-butoxy 1Co an intermolecular Co-O interaction aligns the molecular stacks, while for sec-butoxy 3Co only [Formula: see text]-[Formula: see text] stacking of the Pc-ring was present. Both 3Co and 3Cu were ring-oxidized at lower potentials than 1Co and 1Cu, and the increased steric bulk from the branched ether chains prevented the overlap of their N8C8 inner rings.","PeriodicalId":16876,"journal":{"name":"Journal of Porphyrins and Phthalocyanines","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decreasing the aggregation and ligand redox potential of metallophthalocyanines through branched ether functionalization\",\"authors\":\"Declan McKearney, Wen Zhou, Myles Scollon, Taniyuki Furuyama, V. Williams, D. Leznoff\",\"doi\":\"10.1142/s1088424623500141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The addition of ether functional groups to a metallophthalocyanine ring is known to significantly decrease the oxidation potentials of the ring. In this light, the impact of the branching of alkyl-ether groups on the electronic properties was investigated via the synthesis of non-peripheral ([Formula: see text]-substituted n-butyl (1), iso-butyl (2) and sec-butyl (3) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanines, in conjunction with Co and Cu metal centers. From 1 to 3 the first and second ring-based oxidation potentials were decreased by 70 mV and 110 mV respectively both for Cu and Co-containing complexes; the UV-visible Q-band maxima only changed by 4-8 nm, consistent with the destabilization of both the HOMO and LUMO, as confirmed by TD-DFT calculations. The reversibility of both redox couples was improved via branching (3) for the Co complexes. All six complexes were structurally characterized, with varying levels and types of ring distortions. All molecules show 1-D supramolecular stacking, but for n-butoxy 1Co an intermolecular Co-O interaction aligns the molecular stacks, while for sec-butoxy 3Co only [Formula: see text]-[Formula: see text] stacking of the Pc-ring was present. Both 3Co and 3Cu were ring-oxidized at lower potentials than 1Co and 1Cu, and the increased steric bulk from the branched ether chains prevented the overlap of their N8C8 inner rings.\",\"PeriodicalId\":16876,\"journal\":{\"name\":\"Journal of Porphyrins and Phthalocyanines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porphyrins and Phthalocyanines\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1142/s1088424623500141\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porphyrins and Phthalocyanines","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1142/s1088424623500141","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

已知在金属酞菁环上添加醚官能团可显著降低环的氧化电位。有鉴于此,通过合成非外周([式:见正文]-取代的正丁基(1)、异丁基(2)和仲丁基(3)1,4,8,11,15,18,22,25-八丁氧基酞菁,以及Co和Cu金属中心,研究了烷基醚基团的支化对电子性能的影响。从1到3,含Cu和Co的配合物的第一和第二环基氧化电位分别降低了70mV和110mV;紫外可见Q带最大值仅改变4-8nm,与HOMO和LUMO的不稳定一致,如TD-DFT计算所证实的。通过Co配合物的分支(3),两种氧化还原偶的可逆性都得到了改善。所有六种配合物都具有结构特征,具有不同程度和类型的环畸变。所有分子都显示出一维超分子堆叠,但对于正丁氧基1Co,分子间Co-O相互作用使分子堆叠对齐,而对于仲丁氧基3Co,仅存在Pc环的[式:见正文]-[式:参见正文]堆叠。3Co和3Cu在比1Co和1Cu更低的电势下都被环氧化,并且来自支链醚链的空间体积增加阻止了它们的N8C8内环的重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decreasing the aggregation and ligand redox potential of metallophthalocyanines through branched ether functionalization
The addition of ether functional groups to a metallophthalocyanine ring is known to significantly decrease the oxidation potentials of the ring. In this light, the impact of the branching of alkyl-ether groups on the electronic properties was investigated via the synthesis of non-peripheral ([Formula: see text]-substituted n-butyl (1), iso-butyl (2) and sec-butyl (3) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanines, in conjunction with Co and Cu metal centers. From 1 to 3 the first and second ring-based oxidation potentials were decreased by 70 mV and 110 mV respectively both for Cu and Co-containing complexes; the UV-visible Q-band maxima only changed by 4-8 nm, consistent with the destabilization of both the HOMO and LUMO, as confirmed by TD-DFT calculations. The reversibility of both redox couples was improved via branching (3) for the Co complexes. All six complexes were structurally characterized, with varying levels and types of ring distortions. All molecules show 1-D supramolecular stacking, but for n-butoxy 1Co an intermolecular Co-O interaction aligns the molecular stacks, while for sec-butoxy 3Co only [Formula: see text]-[Formula: see text] stacking of the Pc-ring was present. Both 3Co and 3Cu were ring-oxidized at lower potentials than 1Co and 1Cu, and the increased steric bulk from the branched ether chains prevented the overlap of their N8C8 inner rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
20.00%
发文量
62
审稿时长
1 months
期刊介绍: The Journal of Porphyrins and Phthalocyanines (JPP) covers research in the chemistry, physics, biology and technology of porphyrins, phthalocyanines and related macrocycles. Research papers, review articles and short communications deal with the synthesis, spectroscopy, processing and applications of these compounds.
期刊最新文献
N-Alkylcorroles Study of six coordinated cobalt(III) oxophlorin with different axial ligands: Optimization of geometry and determining of energy and electronic configuration at various spin states by employing of B3LYP, BV86P and M06-2X methods A novel 5,10,15,20-tetrakis-(4-(triazol-1-yl)phenyl)porphyridine compound: Crystal structure, photophysical properties and TDDFT calculations An “on-off-on” fluorescent sensor based on TSPP-gallic acid: Visual detection of S2− in actual samples Solvatochromism of a saddle-distorted cationic Zn(II)-porphyrin complex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1