Kishore Sugali, Christine D. Sprunger, Venkata N. Inukollu
{"title":"软件测试:人工智能和机器学习的问题和挑战","authors":"Kishore Sugali, Christine D. Sprunger, Venkata N. Inukollu","doi":"10.5121/IJAIA.2021.12107","DOIUrl":null,"url":null,"abstract":"The history of Artificial Intelligence and Machine Learning dates back to 1950’s. In recent years, there has been an increase in popularity for applications that implement AI and ML technology. As with traditional development, software testing is a critical component of an efficient AI/ML application. However, the approach to development methodology used in AI/ML varies significantly from traditional development. Owing to these variations, numerous software testing challenges occur. This paper aims to recognize and to explain some of the biggest challenges that software testers face in dealing with AI/ML applications. For future research, this study has key implications. Each of the challenges outlined in this paper is ideal for further investigation and has great potential to shed light on the way to more productive software testing strategies and methodologies that can be applied to AI/ML applications.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"12 1","pages":"101-112"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Software Testing: Issues and Challenges of Artificial Intelligence & Machine Learning\",\"authors\":\"Kishore Sugali, Christine D. Sprunger, Venkata N. Inukollu\",\"doi\":\"10.5121/IJAIA.2021.12107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The history of Artificial Intelligence and Machine Learning dates back to 1950’s. In recent years, there has been an increase in popularity for applications that implement AI and ML technology. As with traditional development, software testing is a critical component of an efficient AI/ML application. However, the approach to development methodology used in AI/ML varies significantly from traditional development. Owing to these variations, numerous software testing challenges occur. This paper aims to recognize and to explain some of the biggest challenges that software testers face in dealing with AI/ML applications. For future research, this study has key implications. Each of the challenges outlined in this paper is ideal for further investigation and has great potential to shed light on the way to more productive software testing strategies and methodologies that can be applied to AI/ML applications.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\"12 1\",\"pages\":\"101-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2021.12107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2021.12107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software Testing: Issues and Challenges of Artificial Intelligence & Machine Learning
The history of Artificial Intelligence and Machine Learning dates back to 1950’s. In recent years, there has been an increase in popularity for applications that implement AI and ML technology. As with traditional development, software testing is a critical component of an efficient AI/ML application. However, the approach to development methodology used in AI/ML varies significantly from traditional development. Owing to these variations, numerous software testing challenges occur. This paper aims to recognize and to explain some of the biggest challenges that software testers face in dealing with AI/ML applications. For future research, this study has key implications. Each of the challenges outlined in this paper is ideal for further investigation and has great potential to shed light on the way to more productive software testing strategies and methodologies that can be applied to AI/ML applications.