可生物降解地膜对玉米生长的微气候影响菠菜甘蓝

A. Iriany, F. Hasanah, D. Roeswitawati, M. Bela
{"title":"可生物降解地膜对玉米生长的微气候影响菠菜甘蓝","authors":"A. Iriany, F. Hasanah, D. Roeswitawati, M. Bela","doi":"10.22034/GJESM.2021.02.03","DOIUrl":null,"url":null,"abstract":"BACKGROUND AND OBJECTIVES: Increasing global temperature imposes large risks to food security globally and regionally. Besides, adaptation effort on cultivation practices, such as mulching, is urgent to overcome environmental problem due to certain material used, commonly plastic that is not biodegradable. Biodegradable mulch is a mulch that could be degraded by microorganism and made from renewable organic materials. It plays a role in carbon sequestration and will contribute carbon and nutrients to the soil after being degraded. This current research aimed at investigating soil microclimate under various biodegradable mulch compositions and optimizing the compositions of biodegradable mulch that can be used to support the growth of short-cycle crops i.e. horenso (Spinacia olearecea L.). METHODS: This study was carried out using a simple randomized complete block design with one control (without mulch) and five treatments (biodegradable mulch compositions), namely the percentage of water hyacinth (40-80%) and coconut coir (20-60%).  FINDINGS: All tested biodegradable mulch compositions could modify microclimate by decreasing 1-2°C of soil temperature and maintaining the soil moisture within the range of 63-84%. Although there was no significant difference in the growth and yield of horenso among the differing biodegradable mulch compositions, the biodegradable mulch composition treatments resulted in signficantly higher value than the control (without mulch). The biodegradable mulch composition treatments could increase fresh shoot weight around 38-55%, fresh root weight for about 55-94%, and dry shoot weight approximately by 1.6-2.8 times compared to the control (without mulch).  CONCLUSION: This finding has emphasized that all tested biodegradable mulch compositions are potentially used as mulch for horenso (Spinacia oleracea L.) cultivation. This study provide information in the formulation of biodegradable mulch to adapt the compositions on other short-cycle crops and other horticulture crops.==========================================================================================COPYRIGHTS©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.==========================================================================================","PeriodicalId":46495,"journal":{"name":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Biodegradable mulch as microclimate modification effort for improving the growth of horenso; Spinacia oleracea L.\",\"authors\":\"A. Iriany, F. Hasanah, D. Roeswitawati, M. Bela\",\"doi\":\"10.22034/GJESM.2021.02.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND AND OBJECTIVES: Increasing global temperature imposes large risks to food security globally and regionally. Besides, adaptation effort on cultivation practices, such as mulching, is urgent to overcome environmental problem due to certain material used, commonly plastic that is not biodegradable. Biodegradable mulch is a mulch that could be degraded by microorganism and made from renewable organic materials. It plays a role in carbon sequestration and will contribute carbon and nutrients to the soil after being degraded. This current research aimed at investigating soil microclimate under various biodegradable mulch compositions and optimizing the compositions of biodegradable mulch that can be used to support the growth of short-cycle crops i.e. horenso (Spinacia olearecea L.). METHODS: This study was carried out using a simple randomized complete block design with one control (without mulch) and five treatments (biodegradable mulch compositions), namely the percentage of water hyacinth (40-80%) and coconut coir (20-60%).  FINDINGS: All tested biodegradable mulch compositions could modify microclimate by decreasing 1-2°C of soil temperature and maintaining the soil moisture within the range of 63-84%. Although there was no significant difference in the growth and yield of horenso among the differing biodegradable mulch compositions, the biodegradable mulch composition treatments resulted in signficantly higher value than the control (without mulch). The biodegradable mulch composition treatments could increase fresh shoot weight around 38-55%, fresh root weight for about 55-94%, and dry shoot weight approximately by 1.6-2.8 times compared to the control (without mulch).  CONCLUSION: This finding has emphasized that all tested biodegradable mulch compositions are potentially used as mulch for horenso (Spinacia oleracea L.) cultivation. This study provide information in the formulation of biodegradable mulch to adapt the compositions on other short-cycle crops and other horticulture crops.==========================================================================================COPYRIGHTS©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.==========================================================================================\",\"PeriodicalId\":46495,\"journal\":{\"name\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/GJESM.2021.02.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/GJESM.2021.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

背景和目标:全球气温升高给全球和区域粮食安全带来巨大风险。此外,由于使用了某些材料,通常是不可生物降解的塑料,因此迫切需要对覆盖等种植做法进行适应,以解决环境问题。可生物降解地膜是一种可被微生物降解的地膜,由可再生有机材料制成。它在固碳方面发挥作用,并在退化后为土壤贡献碳和养分。本研究旨在调查各种可生物降解覆盖物成分下的土壤微气候,并优化可生物降解的覆盖物成分,以支持短周期作物(即Spinacia oleareca L.)的生长(可生物降解的覆盖物组合物),即水葫芦(40-80%)和椰子椰壳(20-60%)的百分比。结果:所有测试的可生物降解覆盖物组合物都可以通过降低1-2°C的土壤温度和将土壤湿度保持在63-84%的范围内来改变小气候。尽管不同的可生物降解覆盖物成分在霍伦索的生长和产量方面没有显著差异,但可生物降解的覆盖物成分处理的价值显著高于对照(无覆盖物)。与对照(无地膜)相比,可生物降解的地膜复合处理可使鲜梢重增加约38-55%,鲜根重增加约55-94%,干梢重增加1.6-2.8倍。结论:这一发现强调了所有测试的可生物降解覆盖物组合物都有可能用作马齿苋(Spinacia oleracea L.)栽培的覆盖物。本研究为可生物降解覆盖物的配方提供了信息,以适应其他短周期作物和其他园艺作物的配方==========================================================================================版权所有©2021作者。这是一篇根据知识共享署名(CC BY 4.0)条款分发的开放获取文章,该条款允许在任何媒体上不受限制地使用、分发和复制,只要引用了原始作者和来源。不需要作者或出版商的许可==========================================================================================
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biodegradable mulch as microclimate modification effort for improving the growth of horenso; Spinacia oleracea L.
BACKGROUND AND OBJECTIVES: Increasing global temperature imposes large risks to food security globally and regionally. Besides, adaptation effort on cultivation practices, such as mulching, is urgent to overcome environmental problem due to certain material used, commonly plastic that is not biodegradable. Biodegradable mulch is a mulch that could be degraded by microorganism and made from renewable organic materials. It plays a role in carbon sequestration and will contribute carbon and nutrients to the soil after being degraded. This current research aimed at investigating soil microclimate under various biodegradable mulch compositions and optimizing the compositions of biodegradable mulch that can be used to support the growth of short-cycle crops i.e. horenso (Spinacia olearecea L.). METHODS: This study was carried out using a simple randomized complete block design with one control (without mulch) and five treatments (biodegradable mulch compositions), namely the percentage of water hyacinth (40-80%) and coconut coir (20-60%).  FINDINGS: All tested biodegradable mulch compositions could modify microclimate by decreasing 1-2°C of soil temperature and maintaining the soil moisture within the range of 63-84%. Although there was no significant difference in the growth and yield of horenso among the differing biodegradable mulch compositions, the biodegradable mulch composition treatments resulted in signficantly higher value than the control (without mulch). The biodegradable mulch composition treatments could increase fresh shoot weight around 38-55%, fresh root weight for about 55-94%, and dry shoot weight approximately by 1.6-2.8 times compared to the control (without mulch).  CONCLUSION: This finding has emphasized that all tested biodegradable mulch compositions are potentially used as mulch for horenso (Spinacia oleracea L.) cultivation. This study provide information in the formulation of biodegradable mulch to adapt the compositions on other short-cycle crops and other horticulture crops.==========================================================================================COPYRIGHTS©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.==========================================================================================
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
2.90%
发文量
11
审稿时长
8 weeks
期刊最新文献
Urban green space during the Coronavirus disease pandemic with regard to the socioeconomic characteristics Healthcare waste characteristics and management in regional hospital and private clinic Environmental effect of the Coronavirus-19 determinants and lockdown on carbon emissions Carbon footprint and cost analysis of a bicycle lane in a municipality Microplastic abundance and distribution in surface water and sediment collected from the coastal area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1