基于机器学习方法的城市WDN管道更换优化多目标鲁棒聚类模型

IF 1.6 3区 环境科学与生态学 Q3 WATER RESOURCES Urban Water Journal Pub Date : 2023-05-19 DOI:10.1080/1573062X.2023.2209063
S. M. Jafari, M. Nikoo, O. Bozorg‐Haddad, N. Alamdari, R. Farmani, A. Gandomi
{"title":"基于机器学习方法的城市WDN管道更换优化多目标鲁棒聚类模型","authors":"S. M. Jafari, M. Nikoo, O. Bozorg‐Haddad, N. Alamdari, R. Farmani, A. Gandomi","doi":"10.1080/1573062X.2023.2209063","DOIUrl":null,"url":null,"abstract":"ABSTRACT Water distribution networks (WDNs) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To address these challenges, this study aims to prepare and implement the optimal instructions for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of the multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction increases the network’s physical and hydraulic performance by 56% and 35%, respectively, and decreases the annual deficit of nodes’ demand between 69% and 93%. Also, the proposed methodology reduces the optimization run time by about 99%.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"689 - 706"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust clustering-based multi-objective model for optimal instruction of pipes replacement in urban WDN based on machine learning approaches\",\"authors\":\"S. M. Jafari, M. Nikoo, O. Bozorg‐Haddad, N. Alamdari, R. Farmani, A. Gandomi\",\"doi\":\"10.1080/1573062X.2023.2209063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Water distribution networks (WDNs) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To address these challenges, this study aims to prepare and implement the optimal instructions for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of the multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction increases the network’s physical and hydraulic performance by 56% and 35%, respectively, and decreases the annual deficit of nodes’ demand between 69% and 93%. Also, the proposed methodology reduces the optimization run time by about 99%.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"20 1\",\"pages\":\"689 - 706\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062X.2023.2209063\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2209063","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:由于管道维护和高性能的高投资必要性以及输入变量的不确定性,配水网络面临着严峻的管理挑战。为了应对这些挑战,本研究旨在制定和实施具有最大水力性能、最小成本和最小不确定性的管道更换最佳说明。本文将水力模拟、多目标优化、管道失效率预测、非线性区间规划和多准则决策等五个模型相结合,提出了一种鲁棒聚类多目标(RCMO)方法。在该过程中,实现了一种聚类方法来减少多目标优化的不确定场景。新方法应用于伊朗戈尔根的WDN。实施最优指令可使网络的物理性能和水力性能分别提高56%和35%,并将节点需求的年度赤字降低69%至93%。此外,所提出的方法将优化运行时间减少了约99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust clustering-based multi-objective model for optimal instruction of pipes replacement in urban WDN based on machine learning approaches
ABSTRACT Water distribution networks (WDNs) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To address these challenges, this study aims to prepare and implement the optimal instructions for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of the multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction increases the network’s physical and hydraulic performance by 56% and 35%, respectively, and decreases the annual deficit of nodes’ demand between 69% and 93%. Also, the proposed methodology reduces the optimization run time by about 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Water Journal
Urban Water Journal WATER RESOURCES-
CiteScore
4.40
自引率
11.10%
发文量
101
审稿时长
3 months
期刊介绍: Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management. Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include: network design, optimisation, management, operation and rehabilitation; novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system; demand management and water efficiency, water recycling and source control; stormwater management, urban flood risk quantification and management; monitoring, utilisation and management of urban water bodies including groundwater; water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure); resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing; data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems; decision-support and informatic tools;...
期刊最新文献
A fuzzy group decision-making model for Water Distribution Network rehabilitation Analysis of combined probability and nonprobability samples: A simulation evaluation and application to a teen smoking behavior survey. Environmental contamination by heavy metals and assessing the impact of inhabitant microalgae in bioremediation: a case study of urban water of Yamuna River, India Assessment of the impact of the rise in Lake Victoria water levels on urban flooding using a GIS-based spatial flood modelling approach Indicator-based resilience assessment of stormwater infrastructure network structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1