S. M. Jafari, M. Nikoo, O. Bozorg‐Haddad, N. Alamdari, R. Farmani, A. Gandomi
{"title":"基于机器学习方法的城市WDN管道更换优化多目标鲁棒聚类模型","authors":"S. M. Jafari, M. Nikoo, O. Bozorg‐Haddad, N. Alamdari, R. Farmani, A. Gandomi","doi":"10.1080/1573062X.2023.2209063","DOIUrl":null,"url":null,"abstract":"ABSTRACT Water distribution networks (WDNs) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To address these challenges, this study aims to prepare and implement the optimal instructions for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of the multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction increases the network’s physical and hydraulic performance by 56% and 35%, respectively, and decreases the annual deficit of nodes’ demand between 69% and 93%. Also, the proposed methodology reduces the optimization run time by about 99%.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"689 - 706"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust clustering-based multi-objective model for optimal instruction of pipes replacement in urban WDN based on machine learning approaches\",\"authors\":\"S. M. Jafari, M. Nikoo, O. Bozorg‐Haddad, N. Alamdari, R. Farmani, A. Gandomi\",\"doi\":\"10.1080/1573062X.2023.2209063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Water distribution networks (WDNs) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To address these challenges, this study aims to prepare and implement the optimal instructions for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of the multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction increases the network’s physical and hydraulic performance by 56% and 35%, respectively, and decreases the annual deficit of nodes’ demand between 69% and 93%. Also, the proposed methodology reduces the optimization run time by about 99%.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"20 1\",\"pages\":\"689 - 706\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062X.2023.2209063\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2209063","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
A robust clustering-based multi-objective model for optimal instruction of pipes replacement in urban WDN based on machine learning approaches
ABSTRACT Water distribution networks (WDNs) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To address these challenges, this study aims to prepare and implement the optimal instructions for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of the multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction increases the network’s physical and hydraulic performance by 56% and 35%, respectively, and decreases the annual deficit of nodes’ demand between 69% and 93%. Also, the proposed methodology reduces the optimization run time by about 99%.
期刊介绍:
Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management.
Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include:
network design, optimisation, management, operation and rehabilitation;
novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system;
demand management and water efficiency, water recycling and source control;
stormwater management, urban flood risk quantification and management;
monitoring, utilisation and management of urban water bodies including groundwater;
water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure);
resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing;
data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems;
decision-support and informatic tools;...