Marcos Alves Nicácio, J. Paes, L. Bufalino, Y. López, Sara Freitas de Sousa, Dercilio Junior Verly Lopes
{"title":"稻壳二氧化硅生物纳米颗粒处理油松木材的效果","authors":"Marcos Alves Nicácio, J. Paes, L. Bufalino, Y. López, Sara Freitas de Sousa, Dercilio Junior Verly Lopes","doi":"10.1080/02773813.2022.2055074","DOIUrl":null,"url":null,"abstract":"Abstract Renewable products can ensure environmental sustainability, human health, and reduce the use of traditional products that have toxic compounds in their formulation. Therefore, the research aimed to evaluate the biological resistance of Pinus elliottii wood against xylophagous fungi and termites through impregnation with silica bioparticles (SiO2) obtained from rice husks. To obtain the silica, the material underwent chemical treatment, two cycles of acid leaching with hydrochloric acid, and heat treatment at 500 °C, 550 °C or 600 °C. The purity of the silica obtained was characterized by X-ray fluorescence technique (XRF), and the mean particle size by scanning electron microscopy (SEM). SiO2 was applied to the specimens at concentrations of 0.5%, 1.0%, and 2.0%, and the impregnated samples were subjected to tests with brown rot fungi (Gloeophyllum trabeum, Rhodonia placenta and Neolentinus lepideus), soft rot (taken from natural forest soil) and xylophagous termites (Nasutitermes corniger and Cryptotermes brevis). The thermal treatments promoted the obtainment of high purity bioparticles, with value of approximately 90% and diameter of 263.7 nm. In the termite test, the smallest loss of mass and damage were for the impregnated samples. Termite mortality increased with the concentration of solutions. SiO2 was not effective against xylophagous fungi, with no difference between treatments and controls, indicating that resistance was inherent in the wood itself.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"42 1","pages":"158 - 170"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of silica bionanoparticles obtained from rice husk for the treatment of wood of Pinus elliottii\",\"authors\":\"Marcos Alves Nicácio, J. Paes, L. Bufalino, Y. López, Sara Freitas de Sousa, Dercilio Junior Verly Lopes\",\"doi\":\"10.1080/02773813.2022.2055074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Renewable products can ensure environmental sustainability, human health, and reduce the use of traditional products that have toxic compounds in their formulation. Therefore, the research aimed to evaluate the biological resistance of Pinus elliottii wood against xylophagous fungi and termites through impregnation with silica bioparticles (SiO2) obtained from rice husks. To obtain the silica, the material underwent chemical treatment, two cycles of acid leaching with hydrochloric acid, and heat treatment at 500 °C, 550 °C or 600 °C. The purity of the silica obtained was characterized by X-ray fluorescence technique (XRF), and the mean particle size by scanning electron microscopy (SEM). SiO2 was applied to the specimens at concentrations of 0.5%, 1.0%, and 2.0%, and the impregnated samples were subjected to tests with brown rot fungi (Gloeophyllum trabeum, Rhodonia placenta and Neolentinus lepideus), soft rot (taken from natural forest soil) and xylophagous termites (Nasutitermes corniger and Cryptotermes brevis). The thermal treatments promoted the obtainment of high purity bioparticles, with value of approximately 90% and diameter of 263.7 nm. In the termite test, the smallest loss of mass and damage were for the impregnated samples. Termite mortality increased with the concentration of solutions. SiO2 was not effective against xylophagous fungi, with no difference between treatments and controls, indicating that resistance was inherent in the wood itself.\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"42 1\",\"pages\":\"158 - 170\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2022.2055074\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2022.2055074","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Effect of silica bionanoparticles obtained from rice husk for the treatment of wood of Pinus elliottii
Abstract Renewable products can ensure environmental sustainability, human health, and reduce the use of traditional products that have toxic compounds in their formulation. Therefore, the research aimed to evaluate the biological resistance of Pinus elliottii wood against xylophagous fungi and termites through impregnation with silica bioparticles (SiO2) obtained from rice husks. To obtain the silica, the material underwent chemical treatment, two cycles of acid leaching with hydrochloric acid, and heat treatment at 500 °C, 550 °C or 600 °C. The purity of the silica obtained was characterized by X-ray fluorescence technique (XRF), and the mean particle size by scanning electron microscopy (SEM). SiO2 was applied to the specimens at concentrations of 0.5%, 1.0%, and 2.0%, and the impregnated samples were subjected to tests with brown rot fungi (Gloeophyllum trabeum, Rhodonia placenta and Neolentinus lepideus), soft rot (taken from natural forest soil) and xylophagous termites (Nasutitermes corniger and Cryptotermes brevis). The thermal treatments promoted the obtainment of high purity bioparticles, with value of approximately 90% and diameter of 263.7 nm. In the termite test, the smallest loss of mass and damage were for the impregnated samples. Termite mortality increased with the concentration of solutions. SiO2 was not effective against xylophagous fungi, with no difference between treatments and controls, indicating that resistance was inherent in the wood itself.
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.