基于生物标志物的膀胱癌症生存模型的双阶段离散化方法

M. Nascimben, M. Venturin, L. Rimondini
{"title":"基于生物标志物的膀胱癌症生存模型的双阶段离散化方法","authors":"M. Nascimben, M. Venturin, L. Rimondini","doi":"10.2478/caim-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract Bioinformatic techniques targeting gene expression data require specific analysis pipelines with the aim of studying properties, adaptation, and disease outcomes in a sample population. Present investigation compared together results of four numerical experiments modeling survival rates from bladder cancer genetic profiles. Research showed that a sequence of two discretization phases produced remarkable results compared to a classic approach employing one discretization of gene expression data. Analysis involving two discretization phases consisted of a primary discretizer followed by refinement or pre-binning input values before the main discretization scheme. Among all tests, the best model encloses a sequence of data transformation to compensate skewness, data discretization phase with class-attribute interdependence maximization algorithm, and final classification by voting feature intervals, a classifier that also provides discrete interval optimization.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"12 1","pages":"29 - 47"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Double-stage discretization approaches for biomarker-based bladder cancer survival modeling\",\"authors\":\"M. Nascimben, M. Venturin, L. Rimondini\",\"doi\":\"10.2478/caim-2021-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bioinformatic techniques targeting gene expression data require specific analysis pipelines with the aim of studying properties, adaptation, and disease outcomes in a sample population. Present investigation compared together results of four numerical experiments modeling survival rates from bladder cancer genetic profiles. Research showed that a sequence of two discretization phases produced remarkable results compared to a classic approach employing one discretization of gene expression data. Analysis involving two discretization phases consisted of a primary discretizer followed by refinement or pre-binning input values before the main discretization scheme. Among all tests, the best model encloses a sequence of data transformation to compensate skewness, data discretization phase with class-attribute interdependence maximization algorithm, and final classification by voting feature intervals, a classifier that also provides discrete interval optimization.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"12 1\",\"pages\":\"29 - 47\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2021-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要针对基因表达数据的生物信息学技术需要特定的分析管道,目的是研究样本群体的特性、适应和疾病结果。目前的研究将四个模拟癌症基因图谱存活率的数值实验结果进行了比较。研究表明,与使用一个基因表达数据离散化的经典方法相比,两个离散化阶段的序列产生了显著的结果。涉及两个离散化阶段的分析包括主离散化器,然后在主离散化方案之前对输入值进行细化或预装箱。在所有测试中,最佳模型包含一系列数据变换以补偿偏度,使用类属性相互依存最大化算法的数据离散化阶段,以及通过投票特征区间进行最终分类,该分类器还提供离散区间优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Double-stage discretization approaches for biomarker-based bladder cancer survival modeling
Abstract Bioinformatic techniques targeting gene expression data require specific analysis pipelines with the aim of studying properties, adaptation, and disease outcomes in a sample population. Present investigation compared together results of four numerical experiments modeling survival rates from bladder cancer genetic profiles. Research showed that a sequence of two discretization phases produced remarkable results compared to a classic approach employing one discretization of gene expression data. Analysis involving two discretization phases consisted of a primary discretizer followed by refinement or pre-binning input values before the main discretization scheme. Among all tests, the best model encloses a sequence of data transformation to compensate skewness, data discretization phase with class-attribute interdependence maximization algorithm, and final classification by voting feature intervals, a classifier that also provides discrete interval optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
期刊最新文献
Global Existence of Weak Solutions for Compresssible Navier—Stokes—Fourier Equations with the Truncated Virial Pressure Law Macroscopic traffic flow modelling: from kinematic waves to autonomous vehicles Modelling and predicting coastal zone depth profile evolution: a survey A general review on the NLS equation with point-concentrated nonlinearity Polynomial mapped bases: theory and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1