{"title":"我用热空气从五镍矿石中产生NPI(镍金属)。","authors":"Edi Herianto, Ra Binudi","doi":"10.14203/metalurgi.v28i2.253","DOIUrl":null,"url":null,"abstract":"HOT BLAST CUPOLA TO PRODUCE NICKEL PIG IRON (NPI) OF NICKEL LATERITE ORE.. Production NPI (nickel pig iron) can be done with hot blast cupola. This method can replace the blast furnace production of NPI which is complicated and requires a large invesment. Production of NPI in hot blast cupola give more emphasis on melting process than with a combined melting and reduction process that occurs in the blast furnace. Basically, the use of hot blast cupola in NPI production will give at least three advantages. First, this method allows the levels of nickel content in NPI become higher than blast furnace products. This is because some of the iron can be incorparated into the slag, so that the ratio of nickel to iron in the NPI increases. Second, the savings due to coke combustion that produces carbon monoxide gas in blast furnace. And third, smelting with hot blast allow the use of lower quality coke compared to the blast furnace smelting. The above advantageswill reduce costs to a level that NPI production become more economical. Combined with the simplicity and low investment costs, production of NPI with hot air cupola can be the ideal solution for the processing of nickel laterite ore, particularly of the limonitic type","PeriodicalId":18462,"journal":{"name":"Metalurgija","volume":"28 1","pages":"121-130"},"PeriodicalIF":0.6000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KUPOLA UDARA PANAS UNTUK MEMPRODUKSI NPI (NICKEL PIG IRON) DARI BIJIH NIKEL LATERIT[Hot Blast Cupola to Produce Nickel Pig Iron (NPI) of Nickel Laterite Ore]\",\"authors\":\"Edi Herianto, Ra Binudi\",\"doi\":\"10.14203/metalurgi.v28i2.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HOT BLAST CUPOLA TO PRODUCE NICKEL PIG IRON (NPI) OF NICKEL LATERITE ORE.. Production NPI (nickel pig iron) can be done with hot blast cupola. This method can replace the blast furnace production of NPI which is complicated and requires a large invesment. Production of NPI in hot blast cupola give more emphasis on melting process than with a combined melting and reduction process that occurs in the blast furnace. Basically, the use of hot blast cupola in NPI production will give at least three advantages. First, this method allows the levels of nickel content in NPI become higher than blast furnace products. This is because some of the iron can be incorparated into the slag, so that the ratio of nickel to iron in the NPI increases. Second, the savings due to coke combustion that produces carbon monoxide gas in blast furnace. And third, smelting with hot blast allow the use of lower quality coke compared to the blast furnace smelting. The above advantageswill reduce costs to a level that NPI production become more economical. Combined with the simplicity and low investment costs, production of NPI with hot air cupola can be the ideal solution for the processing of nickel laterite ore, particularly of the limonitic type\",\"PeriodicalId\":18462,\"journal\":{\"name\":\"Metalurgija\",\"volume\":\"28 1\",\"pages\":\"121-130\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metalurgija\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14203/metalurgi.v28i2.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metalurgija","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/metalurgi.v28i2.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
KUPOLA UDARA PANAS UNTUK MEMPRODUKSI NPI (NICKEL PIG IRON) DARI BIJIH NIKEL LATERIT[Hot Blast Cupola to Produce Nickel Pig Iron (NPI) of Nickel Laterite Ore]
HOT BLAST CUPOLA TO PRODUCE NICKEL PIG IRON (NPI) OF NICKEL LATERITE ORE.. Production NPI (nickel pig iron) can be done with hot blast cupola. This method can replace the blast furnace production of NPI which is complicated and requires a large invesment. Production of NPI in hot blast cupola give more emphasis on melting process than with a combined melting and reduction process that occurs in the blast furnace. Basically, the use of hot blast cupola in NPI production will give at least three advantages. First, this method allows the levels of nickel content in NPI become higher than blast furnace products. This is because some of the iron can be incorparated into the slag, so that the ratio of nickel to iron in the NPI increases. Second, the savings due to coke combustion that produces carbon monoxide gas in blast furnace. And third, smelting with hot blast allow the use of lower quality coke compared to the blast furnace smelting. The above advantageswill reduce costs to a level that NPI production become more economical. Combined with the simplicity and low investment costs, production of NPI with hot air cupola can be the ideal solution for the processing of nickel laterite ore, particularly of the limonitic type
期刊介绍:
The journal Metalurgija is primary scientific periodical that publishes scientific papers (original papers, preliminary notes, reviewed papers) as well as professional papers from the area of basic, applicable and developing researching in metallurgy and boundary metallurgy areas (physics, chemistry, mechanical engineering). These papers relate to processing ferrous and non-ferrous metallurgy, treating investigating as well as testing of raw materials, semi products and products, especially in the area of improving new materials and possibilities of their implementation. The journal is the only national periodical of this kind in the Republic of Croatia and covers the scientific field of metallurgy, especially:
physical metallurgy and materials;
process metailurgy, (ferrous and non-ferrous);
mechanical metallurgy (processing, power , etc.);
related (adjoing) branches: mechanlcal engineering, chemistry, physics etc.