{"title":"增材制造变密度开尔文晶格结构的力学性能:一种新的开尔文单元格设计方法","authors":"K. Park, Gil-Oh Kim, Jung-Gil Kim, Y. Roh","doi":"10.1080/24705314.2021.1971893","DOIUrl":null,"url":null,"abstract":"ABSTRACT Behaviors associated with the mechanical responses of a Kelvin unit cell can be improved by optimizing the parameter sets. Herein, we present a shape control method for a Kelvin unit cell by functionalizing the coordinates of 24 vertices. Further, we verified the physical properties of Kelvin lattice structures using relative density and lattice patterning through finite element analysis (FEA). Consequently, we devised a design method for the Kelvin unit cell that can control the cell aspect ratio. Furthermore, we estimated the relative density using the strut section and interior angles of a hexagon as variables, and achieved an accuracy of 96.3–99.7%. The FEA results revealed that with an increase in the relative density of the 1 × 1 × 1 lattice structure of titanium alloy to 0.00800, 0.03065, 0.11194, 0.22789 and 0.36246, the yield strength sharply increased to 0.67, 2.79, 10.23, 27.27 and 51.82 MPa, respectively. When the 1 × 1 × 1, 2 × 2 × 2, 3 × 3 × 3 and 4 × 4 × 4 lattice structures were configured with mm, the yield strength of the lattice structure converged in the 3 × 3 × 3 pattern.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":"7 1","pages":"34 - 45"},"PeriodicalIF":3.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanical properties of additive manufactured variable-density Kelvin lattice structures: a novel design method for Kelvin unit cells\",\"authors\":\"K. Park, Gil-Oh Kim, Jung-Gil Kim, Y. Roh\",\"doi\":\"10.1080/24705314.2021.1971893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Behaviors associated with the mechanical responses of a Kelvin unit cell can be improved by optimizing the parameter sets. Herein, we present a shape control method for a Kelvin unit cell by functionalizing the coordinates of 24 vertices. Further, we verified the physical properties of Kelvin lattice structures using relative density and lattice patterning through finite element analysis (FEA). Consequently, we devised a design method for the Kelvin unit cell that can control the cell aspect ratio. Furthermore, we estimated the relative density using the strut section and interior angles of a hexagon as variables, and achieved an accuracy of 96.3–99.7%. The FEA results revealed that with an increase in the relative density of the 1 × 1 × 1 lattice structure of titanium alloy to 0.00800, 0.03065, 0.11194, 0.22789 and 0.36246, the yield strength sharply increased to 0.67, 2.79, 10.23, 27.27 and 51.82 MPa, respectively. When the 1 × 1 × 1, 2 × 2 × 2, 3 × 3 × 3 and 4 × 4 × 4 lattice structures were configured with mm, the yield strength of the lattice structure converged in the 3 × 3 × 3 pattern.\",\"PeriodicalId\":43844,\"journal\":{\"name\":\"Journal of Structural Integrity and Maintenance\",\"volume\":\"7 1\",\"pages\":\"34 - 45\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Integrity and Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705314.2021.1971893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2021.1971893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Mechanical properties of additive manufactured variable-density Kelvin lattice structures: a novel design method for Kelvin unit cells
ABSTRACT Behaviors associated with the mechanical responses of a Kelvin unit cell can be improved by optimizing the parameter sets. Herein, we present a shape control method for a Kelvin unit cell by functionalizing the coordinates of 24 vertices. Further, we verified the physical properties of Kelvin lattice structures using relative density and lattice patterning through finite element analysis (FEA). Consequently, we devised a design method for the Kelvin unit cell that can control the cell aspect ratio. Furthermore, we estimated the relative density using the strut section and interior angles of a hexagon as variables, and achieved an accuracy of 96.3–99.7%. The FEA results revealed that with an increase in the relative density of the 1 × 1 × 1 lattice structure of titanium alloy to 0.00800, 0.03065, 0.11194, 0.22789 and 0.36246, the yield strength sharply increased to 0.67, 2.79, 10.23, 27.27 and 51.82 MPa, respectively. When the 1 × 1 × 1, 2 × 2 × 2, 3 × 3 × 3 and 4 × 4 × 4 lattice structures were configured with mm, the yield strength of the lattice structure converged in the 3 × 3 × 3 pattern.