SWSA变压器:一种基于全球关注机制的海上风电场超短期风速预测方法

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Journal of Renewable and Sustainable Energy Pub Date : 2023-07-01 DOI:10.1063/5.0153511
Shengmao Lin, Jing Wang, Xuefang Xu, Hang Tan, Peiming Shi, Ruixiong Li
{"title":"SWSA变压器:一种基于全球关注机制的海上风电场超短期风速预测方法","authors":"Shengmao Lin, Jing Wang, Xuefang Xu, Hang Tan, Peiming Shi, Ruixiong Li","doi":"10.1063/5.0153511","DOIUrl":null,"url":null,"abstract":"Accurate ultra-short-term wind speed forecasting is great significance to ensure large scale integration of wind power into the power grid, but the randomness, instability, and non-linear nature of wind speed make it very difficult to be predicted accurately. To solve this problem, shifted window stationary attention transformer (SWSA transformer) is proposed based on a global attention mechanism for ultra-short-term forecasting of wind speed. SWSA transformer can sufficiently extract these complicated features of wind speed to improve the prediction accuracy of wind speed. First, positional embedding and temporal embedding are added at the bottom of the proposed method structure to mark wind speed series, which enables complicated global features of wind speed to be more effectively extracted by attention. Second, a shifted window is utilized to enhance the ability of attention to capture features from the edge sequences. Third, a stationary attention mechanism is applied to not only extract features of wind speed but also optimize the encoder-decoder network for smoothing wind speed sequences. Finally, the predicted values of wind speed are obtained using the calculation in the decoder network. To verify the proposed method, tests are performed utilizing data from an real offshore wind farm. The results show that the proposed method outperforms many popular models evaluated by many indexes including gated recurrent unit, Gaussian process regression, long-short term memory, shared weight long short-term memory network, and shared weight long short-term memory network -Gaussian process regression, in terms of mean absolute error, mean square error (MSE), root mean square error, mean absolute percentage error, mean square percentage error, and coefficient of determination (R2).","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SWSA transformer: A forecasting method of ultra-short-term wind speed from an offshore wind farm using global attention mechanism\",\"authors\":\"Shengmao Lin, Jing Wang, Xuefang Xu, Hang Tan, Peiming Shi, Ruixiong Li\",\"doi\":\"10.1063/5.0153511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate ultra-short-term wind speed forecasting is great significance to ensure large scale integration of wind power into the power grid, but the randomness, instability, and non-linear nature of wind speed make it very difficult to be predicted accurately. To solve this problem, shifted window stationary attention transformer (SWSA transformer) is proposed based on a global attention mechanism for ultra-short-term forecasting of wind speed. SWSA transformer can sufficiently extract these complicated features of wind speed to improve the prediction accuracy of wind speed. First, positional embedding and temporal embedding are added at the bottom of the proposed method structure to mark wind speed series, which enables complicated global features of wind speed to be more effectively extracted by attention. Second, a shifted window is utilized to enhance the ability of attention to capture features from the edge sequences. Third, a stationary attention mechanism is applied to not only extract features of wind speed but also optimize the encoder-decoder network for smoothing wind speed sequences. Finally, the predicted values of wind speed are obtained using the calculation in the decoder network. To verify the proposed method, tests are performed utilizing data from an real offshore wind farm. The results show that the proposed method outperforms many popular models evaluated by many indexes including gated recurrent unit, Gaussian process regression, long-short term memory, shared weight long short-term memory network, and shared weight long short-term memory network -Gaussian process regression, in terms of mean absolute error, mean square error (MSE), root mean square error, mean absolute percentage error, mean square percentage error, and coefficient of determination (R2).\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0153511\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0153511","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确的超短期风速预测对于确保风电大规模接入电网具有重要意义,但风速的随机性、不稳定性和非线性使其很难准确预测。为了解决这一问题,提出了一种基于全局注意力机制的移动窗口平稳注意力变换器(SWSA变换器),用于风速的超短期预测。SWSA变压器可以充分提取这些复杂的风速特征,提高风速的预测精度。首先,在所提出的方法结构的底部添加了位置嵌入和时间嵌入来标记风速序列,这使得注意力能够更有效地提取风速的复杂全局特征。其次,利用移位窗口来增强注意力从边缘序列捕获特征的能力。第三,应用平稳注意力机制不仅提取风速特征,而且优化编码器-解码器网络以平滑风速序列。最后,利用解码器网络中的计算得到风速的预测值。为了验证所提出的方法,利用真实海上风电场的数据进行了测试。结果表明,所提出的方法在平均绝对误差、均方误差(MSE)、均方根误差、,平均绝对百分比误差、均方百分比误差和决定系数(R2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SWSA transformer: A forecasting method of ultra-short-term wind speed from an offshore wind farm using global attention mechanism
Accurate ultra-short-term wind speed forecasting is great significance to ensure large scale integration of wind power into the power grid, but the randomness, instability, and non-linear nature of wind speed make it very difficult to be predicted accurately. To solve this problem, shifted window stationary attention transformer (SWSA transformer) is proposed based on a global attention mechanism for ultra-short-term forecasting of wind speed. SWSA transformer can sufficiently extract these complicated features of wind speed to improve the prediction accuracy of wind speed. First, positional embedding and temporal embedding are added at the bottom of the proposed method structure to mark wind speed series, which enables complicated global features of wind speed to be more effectively extracted by attention. Second, a shifted window is utilized to enhance the ability of attention to capture features from the edge sequences. Third, a stationary attention mechanism is applied to not only extract features of wind speed but also optimize the encoder-decoder network for smoothing wind speed sequences. Finally, the predicted values of wind speed are obtained using the calculation in the decoder network. To verify the proposed method, tests are performed utilizing data from an real offshore wind farm. The results show that the proposed method outperforms many popular models evaluated by many indexes including gated recurrent unit, Gaussian process regression, long-short term memory, shared weight long short-term memory network, and shared weight long short-term memory network -Gaussian process regression, in terms of mean absolute error, mean square error (MSE), root mean square error, mean absolute percentage error, mean square percentage error, and coefficient of determination (R2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
期刊最新文献
High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode Case study of a bore wind-ramp event from lidar measurements and HRRR simulations over ARM Southern Great Plains Barriers and variable spacing enhance convective cooling and increase power output in solar PV plants Two three-dimensional super-Gaussian wake models for hilly terrain Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1