Shengmao Lin, Jing Wang, Xuefang Xu, Hang Tan, Peiming Shi, Ruixiong Li
{"title":"SWSA变压器:一种基于全球关注机制的海上风电场超短期风速预测方法","authors":"Shengmao Lin, Jing Wang, Xuefang Xu, Hang Tan, Peiming Shi, Ruixiong Li","doi":"10.1063/5.0153511","DOIUrl":null,"url":null,"abstract":"Accurate ultra-short-term wind speed forecasting is great significance to ensure large scale integration of wind power into the power grid, but the randomness, instability, and non-linear nature of wind speed make it very difficult to be predicted accurately. To solve this problem, shifted window stationary attention transformer (SWSA transformer) is proposed based on a global attention mechanism for ultra-short-term forecasting of wind speed. SWSA transformer can sufficiently extract these complicated features of wind speed to improve the prediction accuracy of wind speed. First, positional embedding and temporal embedding are added at the bottom of the proposed method structure to mark wind speed series, which enables complicated global features of wind speed to be more effectively extracted by attention. Second, a shifted window is utilized to enhance the ability of attention to capture features from the edge sequences. Third, a stationary attention mechanism is applied to not only extract features of wind speed but also optimize the encoder-decoder network for smoothing wind speed sequences. Finally, the predicted values of wind speed are obtained using the calculation in the decoder network. To verify the proposed method, tests are performed utilizing data from an real offshore wind farm. The results show that the proposed method outperforms many popular models evaluated by many indexes including gated recurrent unit, Gaussian process regression, long-short term memory, shared weight long short-term memory network, and shared weight long short-term memory network -Gaussian process regression, in terms of mean absolute error, mean square error (MSE), root mean square error, mean absolute percentage error, mean square percentage error, and coefficient of determination (R2).","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SWSA transformer: A forecasting method of ultra-short-term wind speed from an offshore wind farm using global attention mechanism\",\"authors\":\"Shengmao Lin, Jing Wang, Xuefang Xu, Hang Tan, Peiming Shi, Ruixiong Li\",\"doi\":\"10.1063/5.0153511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate ultra-short-term wind speed forecasting is great significance to ensure large scale integration of wind power into the power grid, but the randomness, instability, and non-linear nature of wind speed make it very difficult to be predicted accurately. To solve this problem, shifted window stationary attention transformer (SWSA transformer) is proposed based on a global attention mechanism for ultra-short-term forecasting of wind speed. SWSA transformer can sufficiently extract these complicated features of wind speed to improve the prediction accuracy of wind speed. First, positional embedding and temporal embedding are added at the bottom of the proposed method structure to mark wind speed series, which enables complicated global features of wind speed to be more effectively extracted by attention. Second, a shifted window is utilized to enhance the ability of attention to capture features from the edge sequences. Third, a stationary attention mechanism is applied to not only extract features of wind speed but also optimize the encoder-decoder network for smoothing wind speed sequences. Finally, the predicted values of wind speed are obtained using the calculation in the decoder network. To verify the proposed method, tests are performed utilizing data from an real offshore wind farm. The results show that the proposed method outperforms many popular models evaluated by many indexes including gated recurrent unit, Gaussian process regression, long-short term memory, shared weight long short-term memory network, and shared weight long short-term memory network -Gaussian process regression, in terms of mean absolute error, mean square error (MSE), root mean square error, mean absolute percentage error, mean square percentage error, and coefficient of determination (R2).\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0153511\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0153511","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
SWSA transformer: A forecasting method of ultra-short-term wind speed from an offshore wind farm using global attention mechanism
Accurate ultra-short-term wind speed forecasting is great significance to ensure large scale integration of wind power into the power grid, but the randomness, instability, and non-linear nature of wind speed make it very difficult to be predicted accurately. To solve this problem, shifted window stationary attention transformer (SWSA transformer) is proposed based on a global attention mechanism for ultra-short-term forecasting of wind speed. SWSA transformer can sufficiently extract these complicated features of wind speed to improve the prediction accuracy of wind speed. First, positional embedding and temporal embedding are added at the bottom of the proposed method structure to mark wind speed series, which enables complicated global features of wind speed to be more effectively extracted by attention. Second, a shifted window is utilized to enhance the ability of attention to capture features from the edge sequences. Third, a stationary attention mechanism is applied to not only extract features of wind speed but also optimize the encoder-decoder network for smoothing wind speed sequences. Finally, the predicted values of wind speed are obtained using the calculation in the decoder network. To verify the proposed method, tests are performed utilizing data from an real offshore wind farm. The results show that the proposed method outperforms many popular models evaluated by many indexes including gated recurrent unit, Gaussian process regression, long-short term memory, shared weight long short-term memory network, and shared weight long short-term memory network -Gaussian process regression, in terms of mean absolute error, mean square error (MSE), root mean square error, mean absolute percentage error, mean square percentage error, and coefficient of determination (R2).
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy