遥感中的自监督学习:综述

IF 16.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS IEEE Geoscience and Remote Sensing Magazine Pub Date : 2022-06-27 DOI:10.1109/MGRS.2022.3198244
Yi Wang, C. Albrecht, Nassim Ait Ali Braham, Lichao Mou, Xiao Xiang Zhu
{"title":"遥感中的自监督学习:综述","authors":"Yi Wang, C. Albrecht, Nassim Ait Ali Braham, Lichao Mou, Xiao Xiang Zhu","doi":"10.1109/MGRS.2022.3198244","DOIUrl":null,"url":null,"abstract":"In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains locked. In this article, we provide an introduction to and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for Earth observation (SSL4EO) to pave the way for the fruitful interaction of both domains.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"213-247"},"PeriodicalIF":16.2000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Self-Supervised Learning in Remote Sensing: A review\",\"authors\":\"Yi Wang, C. Albrecht, Nassim Ait Ali Braham, Lichao Mou, Xiao Xiang Zhu\",\"doi\":\"10.1109/MGRS.2022.3198244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains locked. In this article, we provide an introduction to and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for Earth observation (SSL4EO) to pave the way for the fruitful interaction of both domains.\",\"PeriodicalId\":48660,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Magazine\",\"volume\":\"10 1\",\"pages\":\"213-247\"},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1109/MGRS.2022.3198244\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/MGRS.2022.3198244","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 78

摘要

在深度学习研究中,自监督学习(SSL)受到了极大的关注,引发了计算机视觉和遥感界的兴趣。虽然在计算机视觉方面取得了巨大成功,但SSL在地球观测领域的大部分潜力仍然被锁定。在本文中,我们介绍并回顾了遥感背景下用于计算机视觉的SSL的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,验证了SSL在遥感中的潜力,并对数据增强进行了扩展研究。最后,我们确定了地球观测SSL(SSL4EO)未来研究的一系列有希望的方向,为这两个领域富有成效的相互作用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Supervised Learning in Remote Sensing: A review
In deep learning research, self-supervised learning (SSL) has received great attention, triggering interest within both the computer vision and remote sensing communities. While there has been big success in computer vision, most of the potential of SSL in the domain of Earth observation remains locked. In this article, we provide an introduction to and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for Earth observation (SSL4EO) to pave the way for the fruitful interaction of both domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Magazine
IEEE Geoscience and Remote Sensing Magazine Computer Science-General Computer Science
CiteScore
20.50
自引率
2.70%
发文量
58
期刊介绍: The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.
期刊最新文献
ODinMJ: A red, green, blue-thermal dataset for mountain jungle object detection An Integration of Natural Language and Hyperspectral Imaging: A review Generative Artificial Intelligence Meets Synthetic Aperture Radar: A survey A Review of Individual Tree Crown Detection and Delineation From Optical Remote Sensing Images: Current progress and future Microwave Photonic Synthetic Aperture Radar: Systems, experiments, and imaging processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1