Kifle Woldearegay , Berhane Grum , Rudi Hessel , Frank van Steenbergen , Luuk Fleskens , Eyasu Yazew , Lulseged Tamene , Kindu Mekonnen , Teklay Reda , Mulu Haftu
{"title":"流域管理、地下水补给和抗旱能力:适应埃塞俄比亚北部降雨变化的综合方法","authors":"Kifle Woldearegay , Berhane Grum , Rudi Hessel , Frank van Steenbergen , Luuk Fleskens , Eyasu Yazew , Lulseged Tamene , Kindu Mekonnen , Teklay Reda , Mulu Haftu","doi":"10.1016/j.iswcr.2023.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>Rainfall variability coupled with poor land and water management is contributing to food insecurity in many sub-Saharan African countries such as Ethiopia. To address such challenges, various efforts have been implemented in Ethiopia. The objective of this study was to evaluate the long-term impacts of different soil and water conservation and water harvesting interventions on groundwater and drought resilience of the Gule watershed, northern Ethiopia. The study involved: (i) documentation of the approaches followed and the technologies implemented in Gule since the 1990s, (ii) monitoring the hydrological effects of the interventions for ten years, and (iii) evaluation of the effects of the interventions on groundwater (level and quality), spring discharge and suspended sediment concentration (SSC) in runoff. Results showed that interventions were implemented at different stages and scales. As a result of the interventions, the watershed was transformed into a landscape resilient to rainfall variability: (a) dry shallow groundwater wells have become productive and the level of water in wells has raised, (b) the groundwater quality has improved, (c) SSC in high floods has reduced by up to 65%, (d) discharge of existing springs has increased by up to 73% and new springs have started to emerge. Due to improved water availability, irrigated land has increased from less than 3.5 ha before 2002 to 166 ha in 2019. Communities have remained water-secure during an extreme drought in 2015/2016. Implementation of watershed management practices has transformed the landscape to be resilient to rainfall variability in a semi-arid environment: a lesson for adaptation to climate variability and change in similar environments.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 3","pages":"Pages 663-683"},"PeriodicalIF":7.3000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000710/pdfft?md5=fe37091e5a510d92e76b107ff1b04be2&pid=1-s2.0-S2095633923000710-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Watershed management, groundwater recharge and drought resilience: An integrated approach to adapt to rainfall variability in northern Ethiopia\",\"authors\":\"Kifle Woldearegay , Berhane Grum , Rudi Hessel , Frank van Steenbergen , Luuk Fleskens , Eyasu Yazew , Lulseged Tamene , Kindu Mekonnen , Teklay Reda , Mulu Haftu\",\"doi\":\"10.1016/j.iswcr.2023.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rainfall variability coupled with poor land and water management is contributing to food insecurity in many sub-Saharan African countries such as Ethiopia. To address such challenges, various efforts have been implemented in Ethiopia. The objective of this study was to evaluate the long-term impacts of different soil and water conservation and water harvesting interventions on groundwater and drought resilience of the Gule watershed, northern Ethiopia. The study involved: (i) documentation of the approaches followed and the technologies implemented in Gule since the 1990s, (ii) monitoring the hydrological effects of the interventions for ten years, and (iii) evaluation of the effects of the interventions on groundwater (level and quality), spring discharge and suspended sediment concentration (SSC) in runoff. Results showed that interventions were implemented at different stages and scales. As a result of the interventions, the watershed was transformed into a landscape resilient to rainfall variability: (a) dry shallow groundwater wells have become productive and the level of water in wells has raised, (b) the groundwater quality has improved, (c) SSC in high floods has reduced by up to 65%, (d) discharge of existing springs has increased by up to 73% and new springs have started to emerge. Due to improved water availability, irrigated land has increased from less than 3.5 ha before 2002 to 166 ha in 2019. Communities have remained water-secure during an extreme drought in 2015/2016. Implementation of watershed management practices has transformed the landscape to be resilient to rainfall variability in a semi-arid environment: a lesson for adaptation to climate variability and change in similar environments.</p></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"12 3\",\"pages\":\"Pages 663-683\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000710/pdfft?md5=fe37091e5a510d92e76b107ff1b04be2&pid=1-s2.0-S2095633923000710-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000710\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000710","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Watershed management, groundwater recharge and drought resilience: An integrated approach to adapt to rainfall variability in northern Ethiopia
Rainfall variability coupled with poor land and water management is contributing to food insecurity in many sub-Saharan African countries such as Ethiopia. To address such challenges, various efforts have been implemented in Ethiopia. The objective of this study was to evaluate the long-term impacts of different soil and water conservation and water harvesting interventions on groundwater and drought resilience of the Gule watershed, northern Ethiopia. The study involved: (i) documentation of the approaches followed and the technologies implemented in Gule since the 1990s, (ii) monitoring the hydrological effects of the interventions for ten years, and (iii) evaluation of the effects of the interventions on groundwater (level and quality), spring discharge and suspended sediment concentration (SSC) in runoff. Results showed that interventions were implemented at different stages and scales. As a result of the interventions, the watershed was transformed into a landscape resilient to rainfall variability: (a) dry shallow groundwater wells have become productive and the level of water in wells has raised, (b) the groundwater quality has improved, (c) SSC in high floods has reduced by up to 65%, (d) discharge of existing springs has increased by up to 73% and new springs have started to emerge. Due to improved water availability, irrigated land has increased from less than 3.5 ha before 2002 to 166 ha in 2019. Communities have remained water-secure during an extreme drought in 2015/2016. Implementation of watershed management practices has transformed the landscape to be resilient to rainfall variability in a semi-arid environment: a lesson for adaptation to climate variability and change in similar environments.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research