使用显著性图模型检测和跟踪视频中的移动云服务

S. Kamble, D. K. Saini, Vinay Kumar, A. Gautam, Shikha Verma, Ashish Tiwari, Dinesh Goyal
{"title":"使用显著性图模型检测和跟踪视频中的移动云服务","authors":"S. Kamble, D. K. Saini, Vinay Kumar, A. Gautam, Shikha Verma, Ashish Tiwari, Dinesh Goyal","doi":"10.1080/09720529.2022.2072436","DOIUrl":null,"url":null,"abstract":"Abstract In cloud computing, the services are observed in the video stream and clustering their pixels is the initial task in service detection. Tracking is the practice to observe or tracking the moments of a given item in each frame. Numerous false positives are included in the frame. Using the saliency map model and the Extended Kalman Filter, the proposed approach can recognize and track moving objects in video. The item is tracked using an Extended Kalman Filter. In the proposed research the evaluation is based on the delay and accuracy of the evaluation parameter. Finally, the suggested method is compared to existing object tracking methods, with an accuracy of greater than 90% attained.","PeriodicalId":46563,"journal":{"name":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","volume":"25 1","pages":"1083 - 1092"},"PeriodicalIF":1.2000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Detection and tracking of moving cloud services from video using saliency map model\",\"authors\":\"S. Kamble, D. K. Saini, Vinay Kumar, A. Gautam, Shikha Verma, Ashish Tiwari, Dinesh Goyal\",\"doi\":\"10.1080/09720529.2022.2072436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In cloud computing, the services are observed in the video stream and clustering their pixels is the initial task in service detection. Tracking is the practice to observe or tracking the moments of a given item in each frame. Numerous false positives are included in the frame. Using the saliency map model and the Extended Kalman Filter, the proposed approach can recognize and track moving objects in video. The item is tracked using an Extended Kalman Filter. In the proposed research the evaluation is based on the delay and accuracy of the evaluation parameter. Finally, the suggested method is compared to existing object tracking methods, with an accuracy of greater than 90% attained.\",\"PeriodicalId\":46563,\"journal\":{\"name\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"volume\":\"25 1\",\"pages\":\"1083 - 1092\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09720529.2022.2072436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09720529.2022.2072436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

摘要

摘要在云计算中,在视频流中观察服务,对其像素进行聚类是服务检测的初始任务。跟踪是观察或跟踪每帧中给定项目的时刻的练习。帧中包含许多误报。利用显著性图模型和扩展卡尔曼滤波器,该方法可以识别和跟踪视频中的运动对象。使用扩展卡尔曼滤波器跟踪项目。在所提出的研究中,评估是基于评估参数的延迟和准确性。最后,将所提出的方法与现有的目标跟踪方法进行了比较,精度达到90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and tracking of moving cloud services from video using saliency map model
Abstract In cloud computing, the services are observed in the video stream and clustering their pixels is the initial task in service detection. Tracking is the practice to observe or tracking the moments of a given item in each frame. Numerous false positives are included in the frame. Using the saliency map model and the Extended Kalman Filter, the proposed approach can recognize and track moving objects in video. The item is tracked using an Extended Kalman Filter. In the proposed research the evaluation is based on the delay and accuracy of the evaluation parameter. Finally, the suggested method is compared to existing object tracking methods, with an accuracy of greater than 90% attained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
21.40%
发文量
126
期刊最新文献
A4-graph for the twisted group 3D4 (3) Modern Metrics (MM): Software size estimation using function points for artificial intelligence and data analytics applications and finding the effort modifiers of the functional units using indian software industry Optimized deep learning methodology for intruder behavior detection and classification in cloud I-prime fuzzy submodules Information security based on sub-system keys generator by utilizing polynomials method and logic gate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1