利用遥感预测Sidoarjo泥石流范围

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2022-04-30 DOI:10.5614/itbj.ict.res.appl.2022.16.1.4
Wishnumurti Wicaksono, S. Isa
{"title":"利用遥感预测Sidoarjo泥石流范围","authors":"Wishnumurti Wicaksono, S. Isa","doi":"10.5614/itbj.ict.res.appl.2022.16.1.4","DOIUrl":null,"url":null,"abstract":"The Sidoarjo mud flow in East Java is the result of a natural phenomenon in which hot mudflow occurs due to volcanic activity. The Sidoarjo mud flow resulted in a considerable ecological disaster in the area. In this study, by using the Modification of Normalized Difference Water Index (MNDWI) technique we measured the extension of the mudflow area from 2013 to 2020 using Landsat 8 satellite data imagery. This study is meant to predict the extension of the mud flow area in the research site by comparing regression and neural network techniques in order to find the best approach. The RPROP MLP neural network technique was used to predict the Sidoarjo mud-flowing area in 2021 to 2025. Surprisingly the results of these calculations showed that the RPROP MLP neural network with three hidden layers and 20 neurons performed the best, with an R square value for training of 0.77915565 and for testing of 0.78321550.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Extent of Sidoarjo Mud Flow Using Remote Sensing\",\"authors\":\"Wishnumurti Wicaksono, S. Isa\",\"doi\":\"10.5614/itbj.ict.res.appl.2022.16.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sidoarjo mud flow in East Java is the result of a natural phenomenon in which hot mudflow occurs due to volcanic activity. The Sidoarjo mud flow resulted in a considerable ecological disaster in the area. In this study, by using the Modification of Normalized Difference Water Index (MNDWI) technique we measured the extension of the mudflow area from 2013 to 2020 using Landsat 8 satellite data imagery. This study is meant to predict the extension of the mud flow area in the research site by comparing regression and neural network techniques in order to find the best approach. The RPROP MLP neural network technique was used to predict the Sidoarjo mud-flowing area in 2021 to 2025. Surprisingly the results of these calculations showed that the RPROP MLP neural network with three hidden layers and 20 neurons performed the best, with an R square value for training of 0.77915565 and for testing of 0.78321550.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

东爪哇的Sidoarjo泥流是火山活动引起的热泥流自然现象的结果。Sidoarjo泥石流在该地区造成了严重的生态灾难。在这项研究中,通过使用归一化差异水指数修正(MNDWI)技术,我们使用陆地卫星8号卫星数据图像测量了2013年至2020年泥流区域的扩展。本研究旨在通过比较回归和神经网络技术来预测研究场地泥石流面积的扩展,以找到最佳方法。采用RPROP-MLP神经网络技术对2021年至2025年Sidoarjo泥浆流动面积进行了预测。令人惊讶的是,这些计算的结果表明,具有三个隐藏层和20个神经元的RPROP-MLP神经网络表现最好,训练的R平方值为0.77915565,测试的R平方为0.78321550。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Extent of Sidoarjo Mud Flow Using Remote Sensing
The Sidoarjo mud flow in East Java is the result of a natural phenomenon in which hot mudflow occurs due to volcanic activity. The Sidoarjo mud flow resulted in a considerable ecological disaster in the area. In this study, by using the Modification of Normalized Difference Water Index (MNDWI) technique we measured the extension of the mudflow area from 2013 to 2020 using Landsat 8 satellite data imagery. This study is meant to predict the extension of the mud flow area in the research site by comparing regression and neural network techniques in order to find the best approach. The RPROP MLP neural network technique was used to predict the Sidoarjo mud-flowing area in 2021 to 2025. Surprisingly the results of these calculations showed that the RPROP MLP neural network with three hidden layers and 20 neurons performed the best, with an R square value for training of 0.77915565 and for testing of 0.78321550.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1