醋酸诱导小鼠非缺血性骨骼肌损伤后肌肉再生开始时microRNA-210水平升高

IF 0.9 4区 医学 Q4 PATHOLOGY Journal of Toxicologic Pathology Pub Date : 2021-12-24 DOI:10.1293/tox.2021-0061
Y. Takai, Takeshi Watanabe, T. Sano
{"title":"醋酸诱导小鼠非缺血性骨骼肌损伤后肌肉再生开始时microRNA-210水平升高","authors":"Y. Takai, Takeshi Watanabe, T. Sano","doi":"10.1293/tox.2021-0061","DOIUrl":null,"url":null,"abstract":"The alteration in microRNA-210 level, a hypoxia-inducible microRNA, is not well known in non-ischemic tissue injury. In this study, we characterized the histopathological time course of acetic acid-induced skeletal muscle injury as a non-ischemic tissue injury model and investigated the expression of microRNA-210, hypoxia-inducible factor 1α, and growth factors using quantitative polymerase chain reaction analysis. After a single intramuscular dose of 3% (v/v) acetic acid to C57BL/6J mice, focal coagulative necrosis of muscle fibers was noted from 3 h after dosing and infiltration of F4/80 and Galectin-3 positive M2 macrophage was noted at 1 d after dosing. Muscular regeneration was initiated from 3 d, when M2 macrophage infiltration was most prominent, till 14 d after dosing. Hif1α and Hgf expression increased from 3 h onwards, and microRNA-210 level increased after 3 d after the treatment. However, no clear elevation in the levels of Igf1 or Vegf was observed. The infiltrative macrophages and regenerative muscle fibers were positive for hypoxia-inducible factor 1α, microRNA-210, and hepatocyte growth factor as assessed by immunohistochemistry or in situ hybridization. In this study, dominant infiltration of M2 macrophages at muscular necrosis and subsequent regeneration after a single intramuscular injection of acetic acid in mice were observed. The increase in hif1α level was observed just after the muscular injury in this non-ischemic tissue injury model, and the elevation in microRNA-210 level was noted at the initiation of tissue regeneration, indicating its effects on tissue protection and repair.","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"35 1","pages":"183 - 192"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated level of microRNA-210 at the initiation of muscular regeneration in acetic acid-induced non-ischemic skeletal muscular injury in mice\",\"authors\":\"Y. Takai, Takeshi Watanabe, T. Sano\",\"doi\":\"10.1293/tox.2021-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The alteration in microRNA-210 level, a hypoxia-inducible microRNA, is not well known in non-ischemic tissue injury. In this study, we characterized the histopathological time course of acetic acid-induced skeletal muscle injury as a non-ischemic tissue injury model and investigated the expression of microRNA-210, hypoxia-inducible factor 1α, and growth factors using quantitative polymerase chain reaction analysis. After a single intramuscular dose of 3% (v/v) acetic acid to C57BL/6J mice, focal coagulative necrosis of muscle fibers was noted from 3 h after dosing and infiltration of F4/80 and Galectin-3 positive M2 macrophage was noted at 1 d after dosing. Muscular regeneration was initiated from 3 d, when M2 macrophage infiltration was most prominent, till 14 d after dosing. Hif1α and Hgf expression increased from 3 h onwards, and microRNA-210 level increased after 3 d after the treatment. However, no clear elevation in the levels of Igf1 or Vegf was observed. The infiltrative macrophages and regenerative muscle fibers were positive for hypoxia-inducible factor 1α, microRNA-210, and hepatocyte growth factor as assessed by immunohistochemistry or in situ hybridization. In this study, dominant infiltration of M2 macrophages at muscular necrosis and subsequent regeneration after a single intramuscular injection of acetic acid in mice were observed. The increase in hif1α level was observed just after the muscular injury in this non-ischemic tissue injury model, and the elevation in microRNA-210 level was noted at the initiation of tissue regeneration, indicating its effects on tissue protection and repair.\",\"PeriodicalId\":17437,\"journal\":{\"name\":\"Journal of Toxicologic Pathology\",\"volume\":\"35 1\",\"pages\":\"183 - 192\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicologic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1293/tox.2021-0061\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2021-0061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微小RNA-210水平的改变,一种缺氧诱导的微小RNA,在非缺血性组织损伤中尚不清楚。在本研究中,我们将乙酸诱导的骨骼肌损伤的组织病理学时间过程表征为非缺血性组织损伤模型,并使用定量聚合酶链反应分析研究了微小RNA-210、缺氧诱导因子1α和生长因子的表达。对C57BL/6J小鼠单次肌肉注射3%(v/v)乙酸后,从给药后3小时开始观察到肌纤维的局灶性凝固性坏死,并在给药后1天观察到F4/80和半乳糖凝集素-3阳性M2巨噬细胞的浸润。肌肉再生从M2巨噬细胞浸润最显著的3天开始,直到给药后14天。Hif1α和Hgf的表达从治疗后3小时开始增加,微小RNA-210的水平在治疗后3天后增加。然而,没有观察到Igf1或Veff水平的明显升高。通过免疫组织化学或原位杂交评估,浸润性巨噬细胞和再生肌纤维对缺氧诱导因子1α、微小RNA-210和肝细胞生长因子呈阳性。在这项研究中,观察到M2巨噬细胞在肌肉坏死时的主要浸润,以及在小鼠单次肌肉注射乙酸后的随后再生。在该非缺血性组织损伤模型中,在肌肉损伤后不久观察到hif1α水平的增加,并且在组织再生开始时观察到microRNA-210水平的升高,表明其对组织保护和修复的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elevated level of microRNA-210 at the initiation of muscular regeneration in acetic acid-induced non-ischemic skeletal muscular injury in mice
The alteration in microRNA-210 level, a hypoxia-inducible microRNA, is not well known in non-ischemic tissue injury. In this study, we characterized the histopathological time course of acetic acid-induced skeletal muscle injury as a non-ischemic tissue injury model and investigated the expression of microRNA-210, hypoxia-inducible factor 1α, and growth factors using quantitative polymerase chain reaction analysis. After a single intramuscular dose of 3% (v/v) acetic acid to C57BL/6J mice, focal coagulative necrosis of muscle fibers was noted from 3 h after dosing and infiltration of F4/80 and Galectin-3 positive M2 macrophage was noted at 1 d after dosing. Muscular regeneration was initiated from 3 d, when M2 macrophage infiltration was most prominent, till 14 d after dosing. Hif1α and Hgf expression increased from 3 h onwards, and microRNA-210 level increased after 3 d after the treatment. However, no clear elevation in the levels of Igf1 or Vegf was observed. The infiltrative macrophages and regenerative muscle fibers were positive for hypoxia-inducible factor 1α, microRNA-210, and hepatocyte growth factor as assessed by immunohistochemistry or in situ hybridization. In this study, dominant infiltration of M2 macrophages at muscular necrosis and subsequent regeneration after a single intramuscular injection of acetic acid in mice were observed. The increase in hif1α level was observed just after the muscular injury in this non-ischemic tissue injury model, and the elevation in microRNA-210 level was noted at the initiation of tissue regeneration, indicating its effects on tissue protection and repair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Toxicologic Pathology
Journal of Toxicologic Pathology PATHOLOGY-TOXICOLOGY
CiteScore
2.10
自引率
16.70%
发文量
22
审稿时长
>12 weeks
期刊介绍: JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below. Administrative Opinions of Policymakers and Regulatory Agencies Adverse Events Carcinogenesis Data of A Predominantly Negative Nature Drug-Induced Hematologic Toxicity Embryological Pathology High Throughput Pathology Historical Data of Experimental Animals Immunohistochemical Analysis Molecular Pathology Nomenclature of Lesions Non-mammal Toxicity Study Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors Technology and Methodology Related to Toxicological Pathology Tumor Pathology; Neoplasia and Hyperplasia Ultrastructural Analysis Use of Animal Models.
期刊最新文献
Metabolism and effects of acetoaceto-o-toluidine in the urinary bladder of humanized-liver mice High mobility group box1 as a danger signal inducing the infiltration of neutrophils and macrophages in thioacetamide-induced rat liver injury Lymphangiomas with the presence of erythrocytes in mesenteric lymph nodes of Wistar Hannover rats The role of mitochondrial reactive oxygen species in initiating mitochondrial damage and inflammation in wasp-venom-induced acute kidney injury Histopathology of spontaneous lesions in FVB/N mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1