羧甲基罗望子胶纳米粒子;作为一种抗氧化活性

IF 0.7 4区 材料科学 Q4 ELECTROCHEMISTRY Journal of New Materials For Electrochemical Systems Pub Date : 2023-08-25 DOI:10.14447/jnmes.v26i3.a01
Jagram Meena, S. Warkar, D. Verma
{"title":"羧甲基罗望子胶纳米粒子;作为一种抗氧化活性","authors":"Jagram Meena, S. Warkar, D. Verma","doi":"10.14447/jnmes.v26i3.a01","DOIUrl":null,"url":null,"abstract":"The incorporation of biopolymer nanoparticles with potential antioxidant properties into biomaterials for human health care is significant. The current study focuses on nanoparticles carboxymethyl tamarind kernel gum (CMTKG) composite materials because of their potential applications. The co-precipitation method was used to create carboxymethyl tamarind kernel gum nanoparticles (CMTKG-NPs). This technique was used for the first time to create carboxymethyl tamarind kernel gum nanoparticles. The strength of nanoparticle conformation is reported to be influenced by co-precipitation and stirring time. Nanoparticles were characterised using high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and thermo-gravimetric analysis (TGA). Suspense particle sizes have been determined to be in the 40-60 nm range. It was concluded that similar nanoparticles could be used in antioxidant activities.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxymethyl Tamarind Kernel Gum Nanoparticles; As an Antioxidant Activity\",\"authors\":\"Jagram Meena, S. Warkar, D. Verma\",\"doi\":\"10.14447/jnmes.v26i3.a01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incorporation of biopolymer nanoparticles with potential antioxidant properties into biomaterials for human health care is significant. The current study focuses on nanoparticles carboxymethyl tamarind kernel gum (CMTKG) composite materials because of their potential applications. The co-precipitation method was used to create carboxymethyl tamarind kernel gum nanoparticles (CMTKG-NPs). This technique was used for the first time to create carboxymethyl tamarind kernel gum nanoparticles. The strength of nanoparticle conformation is reported to be influenced by co-precipitation and stirring time. Nanoparticles were characterised using high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and thermo-gravimetric analysis (TGA). Suspense particle sizes have been determined to be in the 40-60 nm range. It was concluded that similar nanoparticles could be used in antioxidant activities.\",\"PeriodicalId\":16447,\"journal\":{\"name\":\"Journal of New Materials For Electrochemical Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Materials For Electrochemical Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14447/jnmes.v26i3.a01\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v26i3.a01","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

将具有潜在抗氧化性能的生物聚合物纳米颗粒掺入用于人类健康护理的生物材料中具有重要意义。纳米羧甲基罗望子核胶(CMTKG)复合材料因其潜在的应用前景而成为当前研究的热点。采用共沉淀法制备了羧甲基罗望子核胶纳米粒子(CMTKG NPs)。该技术首次被用于制备羧甲基罗望子仁胶纳米颗粒。据报道,共沉淀和搅拌时间会影响纳米颗粒构象的强度。使用高分辨率透射电子显微镜(HR-TEM)、场发射扫描电子显微镜(FE-SEM)、傅立叶变换红外光谱(FTIR)、x射线衍射分析(XRD)和热重分析(TGA)对纳米颗粒进行表征。悬浮液颗粒尺寸已被确定为在40-60nm范围内。结果表明,类似的纳米颗粒可以用于抗氧化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carboxymethyl Tamarind Kernel Gum Nanoparticles; As an Antioxidant Activity
The incorporation of biopolymer nanoparticles with potential antioxidant properties into biomaterials for human health care is significant. The current study focuses on nanoparticles carboxymethyl tamarind kernel gum (CMTKG) composite materials because of their potential applications. The co-precipitation method was used to create carboxymethyl tamarind kernel gum nanoparticles (CMTKG-NPs). This technique was used for the first time to create carboxymethyl tamarind kernel gum nanoparticles. The strength of nanoparticle conformation is reported to be influenced by co-precipitation and stirring time. Nanoparticles were characterised using high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), fourier transform infrared (FTIR), x-ray diffraction analysis (XRD), and thermo-gravimetric analysis (TGA). Suspense particle sizes have been determined to be in the 40-60 nm range. It was concluded that similar nanoparticles could be used in antioxidant activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of New Materials For Electrochemical Systems
Journal of New Materials For Electrochemical Systems ELECTROCHEMISTRY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.
期刊最新文献
Effect of Ceramic Coated Tool on Stray Cut in Electrochemical Micromachining Hybrid Optimization Algorithms for Maximum Power Point Tracking based Incremental Conductance Techniques with Solar Cell Synthesis of Graphene Oxide Coating on ZnCo2S4 Using Hydrothermal Method for Electrochemical Capacitors Applications Harmonics Reduction and Balanced Transition in Hybrid Renewable Energy Sources in a Micro Grid Power System Tuning the Particle Size Distribution at Cathode for Enhanced Li-Ion Battery Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1