用于改进GNSS精确点定位的ERA5对流层参数增强方法

IF 2.8 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geodesy and Geodynamics Pub Date : 2023-09-01 DOI:10.1016/j.geog.2023.01.004
Liangke Huang , Feifan Liu , Lijie Guo , Guiwen Lan , Lv Zhou , Cheng Wang , Lilong Liu
{"title":"用于改进GNSS精确点定位的ERA5对流层参数增强方法","authors":"Liangke Huang ,&nbsp;Feifan Liu ,&nbsp;Lijie Guo ,&nbsp;Guiwen Lan ,&nbsp;Lv Zhou ,&nbsp;Cheng Wang ,&nbsp;Lilong Liu","doi":"10.1016/j.geog.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>Precise Point Positioning (PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring. As atmospheric reanalysis data products' accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay (ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts (ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System (GNSS) PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service (IGS) stations for 2016–2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm, respectively. Further, GNSS observations for one week in each of the four seasons (spring: DOY 92–98; summer: DOY 199–205; autumn: DOY 275–281; and winter: DOY 22–28) from 34 multi-GNSS experiments (MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes (without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern (E) and Northern (N) directions, while the average convergence time over four weeks in the vertical (U) direction improved by 53.3% and 52.7%, respectively (in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively. Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 5","pages":"Pages 467-476"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ERA5 tropospheric parameters-augmented approach for improving GNSS precise point positioning\",\"authors\":\"Liangke Huang ,&nbsp;Feifan Liu ,&nbsp;Lijie Guo ,&nbsp;Guiwen Lan ,&nbsp;Lv Zhou ,&nbsp;Cheng Wang ,&nbsp;Lilong Liu\",\"doi\":\"10.1016/j.geog.2023.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Precise Point Positioning (PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring. As atmospheric reanalysis data products' accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay (ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts (ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System (GNSS) PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service (IGS) stations for 2016–2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm, respectively. Further, GNSS observations for one week in each of the four seasons (spring: DOY 92–98; summer: DOY 199–205; autumn: DOY 275–281; and winter: DOY 22–28) from 34 multi-GNSS experiments (MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes (without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern (E) and Northern (N) directions, while the average convergence time over four weeks in the vertical (U) direction improved by 53.3% and 52.7%, respectively (in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively. Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.</p></div>\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":\"14 5\",\"pages\":\"Pages 467-476\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674984723000186\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984723000186","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

精确点定位(PPP)技术已经发展成为大地测量定位、电离层建模、对流层大气参数探测和地震监测的有力工具。近年来,随着大气再分析数据产品精度和时空分辨率的不断提高,利用大气再分析数据产品获取高精度的对流层延迟参数,如天顶对流层延迟(ZTD)和对流层水平梯度等变得十分重要。这些对流层延迟参数可以应用于PPP,以减少收敛时间,提高位置垂直方向的精度。欧洲中期天气预报中心再分析5号(ERA5)大气再分析资料是欧洲中期天气预报中心(ECMWF)最新发布的具有高时空分辨率的产品。ERA5数据在全球导航卫星系统(GNSS) PPP中的应用研究较少。因此,本研究使用2016-2017年全球290个国际GNSS服务(IGS)站提供的ZTD值对ERA5数据衍生的ZTD产品进行了比较和验证。结果表明,ZTD性能稳定,年平均偏差和RMS值分别为0.23 cm和1.09 cm。此外,四个季节中每个季节一周的GNSS观测(春季:DOY 92-98;夏季:1999 - 205年;秋季:DOY 275-281;以2016年全球分布的34个多GNSS实验站(MGEX)的数据和冬季(DOY 22-28)为研究对象,评估了era5反演的对流层延迟产品在GNSS PPP中的性能。将era5增强PPP与两种标准GNSS PPP方案(不估计对流层水平梯度和估计对流层水平梯度)的性能进行了比较。结果表明,era5增强后的GNSS PPP在东部(E)和北部(N)方向上的收敛时间均无显著改善,而在垂直(U)方向上的4周平均收敛时间分别提高了53.3%和52.7%(以pgm站为例)。南北半球U方向周平均辐合次数分别减少16.3%、12.6%、9.6%和9.1%,分别减少16.9%、9.6%、8.9%和14.5%。在定位精度方面,era5增强PPP方案在U方向分别比两种PPP标准方案提高13.3%和16.2%。在东向和北向定位性能均无明显改善。因此,本研究证明了ERA5对流层参数增强方法在北斗导航定位中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ERA5 tropospheric parameters-augmented approach for improving GNSS precise point positioning

Precise Point Positioning (PPP) technology has developed into a potent instrument for geodetic positioning, ionospheric modeling, tropospheric atmospheric parameter detection, and seismic monitoring. As atmospheric reanalysis data products' accuracy and spatiotemporal resolution have improved recently, it has become important to apply these products to obtain high-accuracy tropospheric delay parameters, like zenith tropospheric delay (ZTD) and tropospheric horizontal gradient. These tropospheric delay parameters can be applied to PPP to reduce the convergence time and to increase the accuracy in the vertical direction of the position. The European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric reanalysis data is the latest product with a high spatiotemporal resolution released by the European Center for Medium-Range Weather Forecasts (ECMWF). Only a few researches have evaluated the application of ERA5 data to Global Navigation Satellite System (GNSS) PPP. Therefore, this study compared and validated the ZTD products derived from ERA5 data using ZTD values provided by 290 global International GNSS Service (IGS) stations for 2016–2017. The results indicated a stable performance for ZTD, with annual average bias and RMS values of 0.23 cm and 1.09 cm, respectively. Further, GNSS observations for one week in each of the four seasons (spring: DOY 92–98; summer: DOY 199–205; autumn: DOY 275–281; and winter: DOY 22–28) from 34 multi-GNSS experiments (MGEX) stations distributed globally in 2016 were considered to evaluate the performance of ERA5-derived tropospheric delay products in GNSS PPP. The performance of ERA5-enhanced PPP was compared with that of the two standard GNSS PPP schemes (without estimated tropospheric horizontal gradient and with estimated tropospheric horizontal gradient). The results demonstrated that ERA5-enhanced GNSS PPP showed no significant improvement in the convergence times in both the Eastern (E) and Northern (N) directions, while the average convergence time over four weeks in the vertical (U) direction improved by 53.3% and 52.7%, respectively (in the case of pngm station). The average convergence times for each week in the U direction of the northern and southern hemisphere stations indicated a decrease of 16.3%, 12.6%, 9.6%, and 9.1%, and 16.9%, 9.6%, 8.9%, and 14.5%, respectively. Regarding positioning accuracy, ERA5-enhanced PPP showed an improvement of 13.3% and 16.2% over the two standard PPP schemes in the U direction, respectively. No significant improvement in the positioning performance was observed in both the E and N directions. Thus, this study demonstrated the potential application of the ERA5 tropospheric parameters-augmented approach to Beidou navigation and positioning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodesy and Geodynamics
Geodesy and Geodynamics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
4.40
自引率
4.20%
发文量
566
审稿时长
69 days
期刊介绍: Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.
期刊最新文献
Editorial Board Present-day movement characteristics of the Qinghai Nanshan fault and its surrounding area from GPS observation Probing signals of atmospheric gravity waves excited by the July 29, 2021 MW8.2 Alaska earthquake Inversion method of deflection of the vertical based on SWOT wide-swath altimeter data Assessment of the performance of the TOPGNSS and ANN-MB antennas for ionospheric measurements using low-cost u-blox GNSS receivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1