分级数据认知诊断评估的多元体模型

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY International Journal of Testing Pub Date : 2018-07-03 DOI:10.1080/15305058.2017.1396465
Dongbo Tu, Chanjin Zheng, Yan Cai, Xuliang Gao, Daxun Wang
{"title":"分级数据认知诊断评估的多元体模型","authors":"Dongbo Tu, Chanjin Zheng, Yan Cai, Xuliang Gao, Daxun Wang","doi":"10.1080/15305058.2017.1396465","DOIUrl":null,"url":null,"abstract":"Pursuing the line of the difference models in IRT (Thissen & Steinberg, 1986), this article proposed a new cognitive diagnostic model for graded/polytomous data based on the deterministic input, noisy, and gate (Haertel, 1989; Junker & Sijtsma, 2001), which is named the DINA model for graded data (DINA-GD). We investigated the performance of a full Bayesian estimation of the proposed model. In the simulation, the classification accuracy and item recovery for the DINA-GD model were investigated. The results indicated that the proposed model had acceptable examinees' correct attribute classification rate and item parameter recovery. In addition, a real-data example was used to illustrate the application of this new model with the graded data or polytomously scored items.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":"18 1","pages":"231 - 252"},"PeriodicalIF":1.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2017.1396465","citationCount":"10","resultStr":"{\"title\":\"A Polytomous Model of Cognitive Diagnostic Assessment for Graded Data\",\"authors\":\"Dongbo Tu, Chanjin Zheng, Yan Cai, Xuliang Gao, Daxun Wang\",\"doi\":\"10.1080/15305058.2017.1396465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pursuing the line of the difference models in IRT (Thissen & Steinberg, 1986), this article proposed a new cognitive diagnostic model for graded/polytomous data based on the deterministic input, noisy, and gate (Haertel, 1989; Junker & Sijtsma, 2001), which is named the DINA model for graded data (DINA-GD). We investigated the performance of a full Bayesian estimation of the proposed model. In the simulation, the classification accuracy and item recovery for the DINA-GD model were investigated. The results indicated that the proposed model had acceptable examinees' correct attribute classification rate and item parameter recovery. In addition, a real-data example was used to illustrate the application of this new model with the graded data or polytomously scored items.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":\"18 1\",\"pages\":\"231 - 252\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15305058.2017.1396465\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2017.1396465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2017.1396465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

遵循IRT中的差异模型(Thissen&Steinberg,1986),本文提出了一种新的基于确定性输入、噪声和门的分级/多模数据的认知诊断模型(Haertel,1989;Junker&Sijtsma,2001),称为分级数据的DINA模型(DINA-GD)。我们研究了所提出的模型的完全贝叶斯估计的性能。在模拟中,研究了DINA-GD模型的分类精度和项目回收率。结果表明,该模型具有可接受的考生正确属性分类率和项目参数恢复率。此外,还用一个真实的数据例子说明了这种新模型在分级数据或多面体评分项目中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Polytomous Model of Cognitive Diagnostic Assessment for Graded Data
Pursuing the line of the difference models in IRT (Thissen & Steinberg, 1986), this article proposed a new cognitive diagnostic model for graded/polytomous data based on the deterministic input, noisy, and gate (Haertel, 1989; Junker & Sijtsma, 2001), which is named the DINA model for graded data (DINA-GD). We investigated the performance of a full Bayesian estimation of the proposed model. In the simulation, the classification accuracy and item recovery for the DINA-GD model were investigated. The results indicated that the proposed model had acceptable examinees' correct attribute classification rate and item parameter recovery. In addition, a real-data example was used to illustrate the application of this new model with the graded data or polytomously scored items.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
期刊最新文献
Combining Mokken Scale Analysis with and rasch measurement theory to explore differences in measurement quality between subgroups Examining the construct validity of the MIDUS version of the Multidimensional Personality Questionnaire (MPQ) Beyond group comparisons: Accounting for intersectional sources of bias in international survey measures Can the dark core of personality be measured briefly, multidimensionally, and invariantly? The D25 measure Investigating the acquiescent responding impact in empathy measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1