{"title":"紧致复空间上仿射线束的分类","authors":"Valentin Plechinger","doi":"10.1515/coma-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract The classification of affine line bundles on a compact complex space is a difficult problem. We study the affine analogue of the Picard functor and the representability problem for this functor. Let be a compact complex space with . We introduce the affine Picard functor which assigns to a complex space the set of families of linearly -framed affine line bundles on parameterized by . Our main result states that the functor is representable if and only if the map is constant. If this is the case, the space which represents this functor is a linear space over whose underlying set is , where is a Poincaré line bundle normalized at . The main idea idea of the proof is to compare the representability of to the representability of a functor considered by Bingener related to the deformation theory of -cohomology classes. Our arguments show in particular that, for = 1, the converse of Bingener’s representability criterion holds","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"6 1","pages":"103 - 117"},"PeriodicalIF":0.5000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2019-0005","citationCount":"0","resultStr":"{\"title\":\"Classifying affine line bundles on a compact complex space\",\"authors\":\"Valentin Plechinger\",\"doi\":\"10.1515/coma-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The classification of affine line bundles on a compact complex space is a difficult problem. We study the affine analogue of the Picard functor and the representability problem for this functor. Let be a compact complex space with . We introduce the affine Picard functor which assigns to a complex space the set of families of linearly -framed affine line bundles on parameterized by . Our main result states that the functor is representable if and only if the map is constant. If this is the case, the space which represents this functor is a linear space over whose underlying set is , where is a Poincaré line bundle normalized at . The main idea idea of the proof is to compare the representability of to the representability of a functor considered by Bingener related to the deformation theory of -cohomology classes. Our arguments show in particular that, for = 1, the converse of Bingener’s representability criterion holds\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"6 1\",\"pages\":\"103 - 117\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2019-0005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classifying affine line bundles on a compact complex space
Abstract The classification of affine line bundles on a compact complex space is a difficult problem. We study the affine analogue of the Picard functor and the representability problem for this functor. Let be a compact complex space with . We introduce the affine Picard functor which assigns to a complex space the set of families of linearly -framed affine line bundles on parameterized by . Our main result states that the functor is representable if and only if the map is constant. If this is the case, the space which represents this functor is a linear space over whose underlying set is , where is a Poincaré line bundle normalized at . The main idea idea of the proof is to compare the representability of to the representability of a functor considered by Bingener related to the deformation theory of -cohomology classes. Our arguments show in particular that, for = 1, the converse of Bingener’s representability criterion holds
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.