基于扰动补偿和惯性识别的滚珠丝杠副滑模控制

IF 1.2 4区 工程技术 Q3 ACOUSTICS Shock and Vibration Pub Date : 2023-08-31 DOI:10.1155/2023/7731379
Hong-yu Ge, Cangfu Wang, Chuanwei Zhang, Manzhi Yang
{"title":"基于扰动补偿和惯性识别的滚珠丝杠副滑模控制","authors":"Hong-yu Ge, Cangfu Wang, Chuanwei Zhang, Manzhi Yang","doi":"10.1155/2023/7731379","DOIUrl":null,"url":null,"abstract":"To solve the problems of dynamic model parameter perturbation and external disturbances during the operation of the ball screw meta-action unit, an adaptive sliding mode control method based on disturbance compensation and inertia identification is proposed in this paper. First, a model of the ball screw meta-action unit is established and the dynamic equation is derived. Taking into account the uncertainty of the dynamic parameters, a least squares method with a forgetting factor is introduced to identify the moment of inertia in real time, and the identification results are utilized to adaptively adjust the sliding mode control law. Second, a nonlinear disturbance observer is designed to effectively observe the load disturbance, and the observed value is substituted into the sliding mode control as feedforward compensation to improve the anti-interference ability of the controller. Committed to the chattering of traditional sliding mode control, an improved adaptive exponential sliding mode reaching law is exploited to construct a novel sliding mode controller, thereby suppressing the slid mode chattering more thoroughly. Finally, the superiority of the proposed method is verified by MATLAB/Simulink simulation and compared with the other two control methods; the control method proposed in this paper can effectively improve the tracking performance of the system and has good robustness.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding Mode Control of Ball Screw Meta-Action Unit Based on Disturbance Compensation and Inertia Identification\",\"authors\":\"Hong-yu Ge, Cangfu Wang, Chuanwei Zhang, Manzhi Yang\",\"doi\":\"10.1155/2023/7731379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problems of dynamic model parameter perturbation and external disturbances during the operation of the ball screw meta-action unit, an adaptive sliding mode control method based on disturbance compensation and inertia identification is proposed in this paper. First, a model of the ball screw meta-action unit is established and the dynamic equation is derived. Taking into account the uncertainty of the dynamic parameters, a least squares method with a forgetting factor is introduced to identify the moment of inertia in real time, and the identification results are utilized to adaptively adjust the sliding mode control law. Second, a nonlinear disturbance observer is designed to effectively observe the load disturbance, and the observed value is substituted into the sliding mode control as feedforward compensation to improve the anti-interference ability of the controller. Committed to the chattering of traditional sliding mode control, an improved adaptive exponential sliding mode reaching law is exploited to construct a novel sliding mode controller, thereby suppressing the slid mode chattering more thoroughly. Finally, the superiority of the proposed method is verified by MATLAB/Simulink simulation and compared with the other two control methods; the control method proposed in this paper can effectively improve the tracking performance of the system and has good robustness.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7731379\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/7731379","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

针对滚珠丝杠元动作单元在运行过程中存在的动态模型参数摄动和外部扰动问题,提出了一种基于扰动补偿和惯性识别的自适应滑模控制方法。首先,建立了滚珠丝杠元作用单元的模型,推导了其动力学方程。考虑到动态参数的不确定性,引入带遗忘因子的最小二乘法实时识别惯性矩,并利用识别结果自适应调整滑模控制律。其次,设计了一个非线性扰动观测器来有效地观测负载扰动,并将观测值代入滑模控制中作为前馈补偿,以提高控制器的抗干扰能力。针对传统滑模控制的抖振问题,利用改进的自适应指数滑模趋近律构造了一种新的滑模控制器,从而更彻底地抑制了滑模抖振。最后,通过MATLAB/Simulink仿真验证了该方法的优越性,并与其他两种控制方法进行了比较;本文提出的控制方法可以有效地提高系统的跟踪性能,具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sliding Mode Control of Ball Screw Meta-Action Unit Based on Disturbance Compensation and Inertia Identification
To solve the problems of dynamic model parameter perturbation and external disturbances during the operation of the ball screw meta-action unit, an adaptive sliding mode control method based on disturbance compensation and inertia identification is proposed in this paper. First, a model of the ball screw meta-action unit is established and the dynamic equation is derived. Taking into account the uncertainty of the dynamic parameters, a least squares method with a forgetting factor is introduced to identify the moment of inertia in real time, and the identification results are utilized to adaptively adjust the sliding mode control law. Second, a nonlinear disturbance observer is designed to effectively observe the load disturbance, and the observed value is substituted into the sliding mode control as feedforward compensation to improve the anti-interference ability of the controller. Committed to the chattering of traditional sliding mode control, an improved adaptive exponential sliding mode reaching law is exploited to construct a novel sliding mode controller, thereby suppressing the slid mode chattering more thoroughly. Finally, the superiority of the proposed method is verified by MATLAB/Simulink simulation and compared with the other two control methods; the control method proposed in this paper can effectively improve the tracking performance of the system and has good robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
期刊最新文献
Control Effect Analysis and Engineering Application of Anchor Cable Beam-Truss Structure on Large-Deformation Roadway in Deep Coal Mine Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses An Investigation of the Acoustic Enclosure of an Air Conditioning Compressor Using Response Surface Analysis and Topological Rigidity Optimization Nonlinear Displacement of the Electrothermal V-Shaped Actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1