长记忆随机波动率模型的估计与预测

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2022-03-25 DOI:10.1515/snde-2020-0106
Omar Abbara, M. Zevallos
{"title":"长记忆随机波动率模型的估计与预测","authors":"Omar Abbara, M. Zevallos","doi":"10.1515/snde-2020-0106","DOIUrl":null,"url":null,"abstract":"Abstract Stochastic Volatility (SV) models are an alternative to GARCH models for estimating volatility and several empirical studies have indicated that volatility exhibits long-memory behavior. The main objective of this work is to propose a new method to estimate a univariate long-memory stochastic volatility (LMSV) model. For this purpose we formulate the LMSV model in a state-space representation with non-Gaussian perturbations in the observation equation, and the estimation of parameters is performed by maximizing the likelihood written in terms derived from a Kalman filter algorithm. We also present a procedure to calculate volatility and Value-at-Risks forecasts. The proposal is evaluated by means of Monte Carlo experiments and applied to real-life time series, where an illustration of market risk calculation is presented.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"27 1","pages":"1 - 24"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation and forecasting of long memory stochastic volatility models\",\"authors\":\"Omar Abbara, M. Zevallos\",\"doi\":\"10.1515/snde-2020-0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Stochastic Volatility (SV) models are an alternative to GARCH models for estimating volatility and several empirical studies have indicated that volatility exhibits long-memory behavior. The main objective of this work is to propose a new method to estimate a univariate long-memory stochastic volatility (LMSV) model. For this purpose we formulate the LMSV model in a state-space representation with non-Gaussian perturbations in the observation equation, and the estimation of parameters is performed by maximizing the likelihood written in terms derived from a Kalman filter algorithm. We also present a procedure to calculate volatility and Value-at-Risks forecasts. The proposal is evaluated by means of Monte Carlo experiments and applied to real-life time series, where an illustration of market risk calculation is presented.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"27 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2020-0106\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0106","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要随机波动率(SV)模型是GARCH模型估计波动率的一种替代方法,几项实证研究表明,波动率表现出长记忆行为。本工作的主要目的是提出一种新的方法来估计单变量长记忆随机波动率(LMSV)模型。为此,我们在观测方程中具有非高斯扰动的状态空间表示中建立LMSV模型,并通过最大化用卡尔曼滤波器算法导出的项表示的似然性来执行参数估计。我们还介绍了一个计算波动率和风险价值预测的程序。通过蒙特卡洛实验对该方案进行了评估,并将其应用于真实的时间序列,其中给出了市场风险计算的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation and forecasting of long memory stochastic volatility models
Abstract Stochastic Volatility (SV) models are an alternative to GARCH models for estimating volatility and several empirical studies have indicated that volatility exhibits long-memory behavior. The main objective of this work is to propose a new method to estimate a univariate long-memory stochastic volatility (LMSV) model. For this purpose we formulate the LMSV model in a state-space representation with non-Gaussian perturbations in the observation equation, and the estimation of parameters is performed by maximizing the likelihood written in terms derived from a Kalman filter algorithm. We also present a procedure to calculate volatility and Value-at-Risks forecasts. The proposal is evaluated by means of Monte Carlo experiments and applied to real-life time series, where an illustration of market risk calculation is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1