{"title":"利用表面科学技术研究乙腈与尘粒相似表面的相互作用","authors":"Emily R. Ingman, Amber Shepherd, W. A. Brown","doi":"10.1595/205651321x16264409352535","DOIUrl":null,"url":null,"abstract":"\n Surface science methodologies, such as reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), are ideally suited to studying the interaction of molecules with model astrophysical surfaces. Here we describe the use of RAIRS and TPD to investigate the adsorption, interactions and thermal processing of acetonitrile and water containing model ices grown under astrophysical conditions on a graphitic dust grain analogue surface. Experiments show that acetonitrile physisorbs on the graphitic surface at all exposures. At the lowest coverages, repulsions between the molecules lead to a decreasing desorption energy with increasing coverage. Analysis of TPD data gives monolayer desorption energies ranging from 28.8 - 39.2 kJ mol-1 and an average multilayer desorption energy of 43.8 kJ mol-1. When acetonitrile is adsorbed in the presence of water ice, the desorption energy of monolayer acetonitrile shows evidence of desorption with a wide range of energies. An estimate of the desorption energy of acetonitrile from CI shows that it is increased to ~37 kJ mol-1 at the lowest exposures of acetonitrile. Amorphous water ice also traps acetonitrile on the graphite surface past its natural desorption temperature, leading to volcano and co-desorption. RAIRS data show that the C≡N vibration shifts, indicative of an interaction between the acetonitrile and the water ice surface.\n","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Surface Science Techniques to Investigate the Interaction of Acetonitrile with Dust Grain Analogue Surfaces\",\"authors\":\"Emily R. Ingman, Amber Shepherd, W. A. Brown\",\"doi\":\"10.1595/205651321x16264409352535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Surface science methodologies, such as reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), are ideally suited to studying the interaction of molecules with model astrophysical surfaces. Here we describe the use of RAIRS and TPD to investigate the adsorption, interactions and thermal processing of acetonitrile and water containing model ices grown under astrophysical conditions on a graphitic dust grain analogue surface. Experiments show that acetonitrile physisorbs on the graphitic surface at all exposures. At the lowest coverages, repulsions between the molecules lead to a decreasing desorption energy with increasing coverage. Analysis of TPD data gives monolayer desorption energies ranging from 28.8 - 39.2 kJ mol-1 and an average multilayer desorption energy of 43.8 kJ mol-1. When acetonitrile is adsorbed in the presence of water ice, the desorption energy of monolayer acetonitrile shows evidence of desorption with a wide range of energies. An estimate of the desorption energy of acetonitrile from CI shows that it is increased to ~37 kJ mol-1 at the lowest exposures of acetonitrile. Amorphous water ice also traps acetonitrile on the graphite surface past its natural desorption temperature, leading to volcano and co-desorption. RAIRS data show that the C≡N vibration shifts, indicative of an interaction between the acetonitrile and the water ice surface.\\n\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651321x16264409352535\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651321x16264409352535","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Using Surface Science Techniques to Investigate the Interaction of Acetonitrile with Dust Grain Analogue Surfaces
Surface science methodologies, such as reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), are ideally suited to studying the interaction of molecules with model astrophysical surfaces. Here we describe the use of RAIRS and TPD to investigate the adsorption, interactions and thermal processing of acetonitrile and water containing model ices grown under astrophysical conditions on a graphitic dust grain analogue surface. Experiments show that acetonitrile physisorbs on the graphitic surface at all exposures. At the lowest coverages, repulsions between the molecules lead to a decreasing desorption energy with increasing coverage. Analysis of TPD data gives monolayer desorption energies ranging from 28.8 - 39.2 kJ mol-1 and an average multilayer desorption energy of 43.8 kJ mol-1. When acetonitrile is adsorbed in the presence of water ice, the desorption energy of monolayer acetonitrile shows evidence of desorption with a wide range of energies. An estimate of the desorption energy of acetonitrile from CI shows that it is increased to ~37 kJ mol-1 at the lowest exposures of acetonitrile. Amorphous water ice also traps acetonitrile on the graphite surface past its natural desorption temperature, leading to volcano and co-desorption. RAIRS data show that the C≡N vibration shifts, indicative of an interaction between the acetonitrile and the water ice surface.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.